
Theory of a Single Magnetic Impurity on a Thin Metal Film
in Proximity to a Superconductor

Jon Ortuzar,1 Jose Ignacio Pascual,1, 2 F. Sebastian Bergeret,3, 4 and Miguel A. Cazalilla4, 2

1CIC nanoGUNE-BRTA, 20018 Donostia-San Sebastián, Spain
2Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain

3Centro de F́ısica de Materiales (CFM-MPC) Centro Mixto CSIC-UPV/EHU, E-20018 Donostia-San Sebastián, Spain
4Donostia International Physics Center (DIPC), 20018 Donostia-San Sebastian, Spain

(Dated: May 1, 2023)

We argue that the formation of Yu-Shiba-Rusinov excitations in proximitized thin films is largely
mediated by a type of Andreev-bound state named after de Gennes and Saint-James. This is shown
by studying an experimentally motivated model and computing the overlap of the wave functions
of these two subgap states. We find the overlap stays close to unity even as the system moves away
from weak coupling across the parity-changing quantum phase transition. Based on this observation,
we introduce a single-site model of the bound state coupled to a quantum spin. The adequacy of
this description is assessed by reintroducing the coupling to the continuum as a weak perturbation
and studying its scaling flow using Anderson’s poor man’s scaling.

I. INTRODUCTION

The presence of impurities on superconductors re-
sults in subgap bound states known as Yu-Shiba-Rusinov
(YSR) states1–3 (see e.g. Ref. 4 for a review). These
excitations can be probed using scanning tunneling spec-
troscopy (STS) and appear as narrow resonances in tun-
neling spectra.5,6 YSR states were originally discovered
as solutions to the scattering problem of a magnetic im-
purity in bulk superconductors, by treating the magnetic
exchange with the impurity as a classical Zeeman field
that couples to the local spin density of quasi-particles.1–4

However, this approximation does not take into account
the quantum nature of the impurity spin, which can give
rise to many-particle effects such as the Kondo effect7 and
it is determinant when e.g. describing the spin carried
by the YSR excitations.8

A fully quantum-mechanical treatment of this prob-
lem aimed at providing a comprehensive description of
experiments,9 often requires the use of sophisticated but
numerically costly methods such as the numerical renor-
malization group (NRG)10,11 or continuous time Mon-
teCarlo.12 In recent years, single-site models13–15 have
emerged as a computationally affordable approach to
treat some of the quantum many-particle aspects of the
YSR problem.15 These models have already been suc-
cessfully used to explain some spectral features observed
in recent experiments.16–18 Moreover, it has been also
applied to explain the complex many-body physics of a
magnetic molecule on a clean gold film proximitized by
a superconducting substrate.18

Proximitized systems have been studied mainly in the
diffusive limit using the Usadel formalism.19 This ap-
proach predicts the decay of the proximity effect as well
as spectroscopic features such as the closing of the gap
and the formation of a minigap.20,21 Experiments with
diffussive systems 21–24 have clearly confirmed those pre-
dictions. However, the systems studied in this context
are mesoscopic in size and the experimental probes that

have been employed cannot resolve the behavior of a sin-
gle magnetic impurity.

On the other hand, thanks to currently available
growth techniques, it is possible to grow clean metallic
overlayers with thicknesses of few atomic layers on top
of superconductors.18,25–27 These novel hybrid systems
open the door to otherwise impossible on-surface synthe-
sis, and may allow one day the study of self-organized
spin chains28–30 as well as other, more complex, molec-
ular structures31 on superconductors. Such systems are
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Figure 1. Panel (a) shows a sketch of the studied system:
a magnetic impurity interacting via exchange with a prox-
imitized thin metal film. Panels (b) and (c) are the local
density of states (LDoS) in the bulk of the superconductor
and in the thin proximitized metallic film. Panel (d) is a
convoluted6 spectroscopic measurement using STM of a thin
(about 4 mono-layers) proximitized Au film on V(100)
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clearly not in the diffusive limit and have to be described
within the ballistic limit. In this case, subgap bound
states appear in the normal region and extend into the
superconductor over distances of the order of the coher-
ence length. The existece of such states has been known
for some time, since the work of de Gennes and Saint
James.32,33

The aim of this work is to extend the application of the
single-site model15 to describe the complexity of a single
magnetic impurities interacting with a thin metallic film
in proximity to a superconductor. This is a problem of
much interest to a number of recent experiments.18,34,35

Below, we first study the system treating the magnetic
impurity as a classical spin in the ballistic limit where
there is a single de Gennes-Saint James (dGSJ) bound
state in the gap. We find that a large overlap exists be-
tween the wavefunctions of the dGSJ and YSR states.
Motivated by this result, we propose that the single-site
model is a relevant simplified model for complex system
consisting of the magnetic impurity on the proximitized
thin film. The model can be solved exactly and also pro-
vides a computationally cheap way to treat the many-
particle effects associated with the quantum spin of the
impurity. The adequacy of the single-site model for the
system of interest here is assessed by means of a ”poor
man’s” scaling analysis. To this end, we introduce a
Hamiltonian consisting of a single-site model perturbed
by an impurity-mediated coupling to the continuum of
other excitations. Under certain conditions we find that,
as the high-energy continuum states are integrated out,
the impurity remains most strongly coupled to the single
site describing the dGSJ state.

The structure of the article is the following: In Sec. II
we describe the system and the approximations used.
Section III is divided in two subsections with the first fo-
cusing on the YSR states resulting from the interaction of
the magnetic impurity with the proximitized film. This
study is undertaken assuming the spin of the magnetic
impurity can be treated classically. In the second sub-
section, we describe the calculation of the wave function
overlap between the YSR and dGSJ states. In Sec. IV, we
introduce the single-site model for the magnetic impurity
on a proximitized film. Finally, in section V, we argue
that the single-site model provides an accurate descrip-
tion of this system using Poor man’s scaling.36 The most
technical details of the calculations have been relegated
to the Appendices.

II. SYSTEM AND MODEL

Fig. 1 shows a schematic picture of the system stud-
ied in this work, which is motivated by experiments re-
ported in Ref. 18 and Refs. 25–27. The system consists
of a magnetic impurity on top of a thin normal metal
film (N) in proximity to a superconductor (S). The su-
perconductor occupies the half-space x > 0, while the N
film corresponds to −a < x < 0. The system is transla-

tionally invariant in the (y, z)-plane, so it is convenient
to describe the electron wave function as ψ(x,k‖), where
k‖ is the component of the momentum vector parallel
to the S/N interface at x = 0. We assume a perfect
S/N interface with no Fermi surface mismatch or poten-
tial barrier, such that the N region acts as a cavity for
electrons with energy E < ∆: they undergo Andreev
retro-reflections at the S/N interface and normal spec-
ular reflections at the interface with vacuum. Accord-
ing to the Bohr-Sommerfeld quantization rule, the phase
accumulated along a closed classical trajectory must be
a multiple of 2π. In the N/S system under considera-
tion, a closed trajectory consists of two Andreev retro-
reflections at the S/N interface and two normal reflec-
tions at x = −a. Thus,

2aE

~vF cosϕ
− cos−1

(
E

∆

)
= nπ (1)

where cos−1(E/∆) is the phase shift associated to each
AR, and cosϕ = k‖/kF . Eq. (1), determines the sub-
gap bound states, also known as De Gennes-Saint James
(dGSJ) states.32 It is valid for clean N-layers with a mean
free path larger than the thickness a, and it describes a
continuum of subgap states.32,37

For the STM experiments of interest to us here, as-
suming specular tunneling,38 the decay of the wavefunc-
tion of these excitations in vacuum is determined by the
metal work-function. This energy scale is of the order
of one electron-volt and therefore much larger than the
superconducting gap. Therefore, in vacuum, the tail of
the dGSJ wave function is essentially indistinguishable
from that of an electron at the Fermi level in the nor-
mal state, and excitations with finite k‖ penetrate less
into the vacuum. As a result, when probed with a STM
in the tunneling regime, excitations with large |k‖| are

filtered out38–40 and dGSJ states are observed as nar-
row subgap resonances made of dGSJ quasi-particles with
k‖ ≈ 0.18 Moreover, a small amount of disorder will ran-
domize trajectories with cosϕ < a/l, where l is the mean
free path, suppressing the coherence of such trajectories.
A magnetic impurity on top of the proximitized film has
compact and anisotropic orbitals that typically couple to
several scattering channels from the substrate. However,
since the dGSJ quasi-particles with k‖ ' 0 penetrate
farther into the vacuum, they are also expected to con-
tribute substantially to the most strongly coupled scat-
tering channel. Thus, one can effectively approximate the
tunneling problem using a one-dimensional model which
neglects the motion parallel to the surface:

H = H0 +HJ , (2)
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where

H0 =
∑
σ

∫ ∞
−a

dxψ†σ(x)

[
− ~2

2m∗
∂2
x − EF

]
ψσ(x′)

+

∫ ∞
0

dx∆ ψ†↑(x)ψ↓(x) + h.c. ,

(3)

and

HJ =
∑
σσ′

Jψ†0σS · sσσ′ψ0σ′ . (4)

Here, ψσ(x) (ψ†σ(x)) represents the annihilation (cre-
ation) operator for an electron with spin σ =↑, ↓ in the
metal-superconductor substrate. H0 describes a proximi-
tized thin film of thickness a > 0. The first term contains
the kinetic energy and chemical potential EF , and the
second term is the s-wave pairing potential. The pairing
potential is not self-consistently calculated. Corrections
due to self-consistency result in a spatially non-uniform
pairing potential ∆(x), but they have only a small ef-
fect on the spectral properties of the dGSJ states.40,41

The magnetic exchange with the impurity is described
by HJ , with s denoting the electron-spin Pauli matrices
and S denoting the impurity spin operator. The oper-

ators ψ0σ (ψ†0σ) annihilate (create) electrons at the po-
sition of the impurity. For the one-dimensional model
introduced above, ψ0σ = ψσ(x = −a). In the following
section, we analyze this model using the approach of Yu,
Shiba, and Rusinov (YSR),1–3 where the impurity spin
S is treated as a classical vector.

III. YSR IN PROXIMITIZED THIN FILMS

In the previous section, we have derived the equation
that determines the spectrum of subgap states (cf Eq. 1)
using the Bohr-Sommerfeld semiclassical approximation.
As explained above, we will focus on the one-dimensional
case, which corresponds to cosϕ = 1 in Eq. (1). To
deal the coupling to the magnetic impurity, we solve the
model described by Eqs. (2)-(4). To this end, we use
Green’s functions (GFs) and follow the approach out-
lined in Ref. 40. The technical details of the calcula-
tion are described in Appendix A. From the knowledge
of the retarded GFs, G(ω + iη, x, x), the local density of
states (LDoS) ρ(ω, x) of the system is obtained by using
ρ(ω, x) = − 1

π Im G(ω + iη, x, x).
Fig. 2 (a) shows the LDoS on the surface as a func-

tion of film thickness. As we increase the thickness, new
dGSJ states enter the gap. The GF also has poles with
a finite imaginary part outside the superconducting gap
that correspond to states in the continuum (i.e. above the
superconductor gap), and give rise to McMillan-Rowell-
Tomasch oscillations.42,43 From here on, we focus our dis-
cussion on thin films with a single subgap bound state.
In the following subsection, we tackle the coupling to the
magnetic impurity.

A. YSR states

The GF for the S/N system provides the starting point
for calculating the spectral properties of the YSR exci-
tations. The properties of the latter can be obtained by
solving the following integral equation:

GY SR(x, x′) =G(x, x′) +G(x,−a)V×
(1− V G(−a,−a))−1G(−a, x′) .

(5)

Here, G(x, x′) is the GF obtained in the previous subsec-
tion. The scattering potential for a spin-S impurity in
the Nambu notation is V = JSσzτ0, assuming that the
impurity (classical) spin points along the z-axis.

Fig 2 (b) shows the evolution of the YSR state as a
function of the exchange coupling α = ν0πJS, with ν0

being the normal metal DoS defined so that the quantum
phase transition (QPT), where the energy of the YSR
state crosses the center of the gap, happens for α = 1.1–3

Note that the exchange coupling splits dGSJ state into
two states (spin up and down), one of which shifts to
higher energy while the other shifts to lower energy, see
Fig. 2(c). As J increases beyond a certain value, the
higher energy state disappears into the continuum. From
this point on, the energy of the remaining subgap state
behaves similarly to a YSR in a bulk superconductor.1–3

For thicker films, with more than one dGSJ state, the be-
havior is similar: each bound state splits in two, shifting
in opposite directions depending on their spin projection,
with more excited states eventually merging in the con-
tinuum and disappearing.

The transmutation of the dGSJ into the YSR state
can be regarded as a consequence of a spectral reorgani-
zation taking place around |ω| = ∆ caused by AR (see
Fig. 1c). Using an analogy to semiconductor physics,
YSR states appear in a superconductor because the co-
herence ”peak” behavior ∼ (ω2 − ∆2)−1/2 (cf. Fig.1 b)
resembles a van Hove singularity at the bottom (top) of
the conduction (valence) band of a one-dimensional in-
sulator. Bound states appear due to the infinitesimal at-
traction provided by the magnetic impurity Dirac-delta
potential. However, in a proximitized film, AR reorga-
nizes the spectral weight by removing the van Hove-like
singularity while shifting most of its spectral weight to
the dGSJ state (cf. Fig.1 c). Together with the localiza-
tion of the dGSJ states at the surface, this enables the
transmutation of one of the dGSJ states per spin into a
YSR. Thus, a large overlap of the wavefunctions of YSR
and dGSJ states is expected, as explicitly demonstrated
in the following subsection.

B. Overlap between SJdG and YSR States

In this section, we compute the overlap of the YSR and
the dGSJ states as a function of the exchange coupling
J . This can be achieved by using the GF obtained from
the scattering solution of the problem with and without
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Figure 2. (a) Evolution of the dGSJ states as a function of
the thickness of the metallic layer. (b) Evolution of the YSR
state for a fixed metallic layer thickness as a function of the
exchange coupling. (c) Zoom-in of the evolution of the YSR
state. (d) Wavefunction of the SJdG and YSR states averaged
over distances � k−1

F .

magnetic impurity. The square of the overlap is com-
puted from the following integral involving the residue of
the two GFs:

|Θ|2 =

∫
dx [udGSJ(x)u∗Y SR(x) + vdGSJ(x)v∗Y SR(x)]

=

∫
dxdx′Tr {Res G(x, x′)) Res GY SR(x′, x)} .

(6)

Here ResGY RS (ResG) is the residue of the Nambu GF
matrix at the YSR (dGSJ) pole with spin up.

In Fig. 3 (a) and (b) we show the behavior of the over-
lap Θ as a function of exchange coupling J for different
values of film thickness (which determines the dGSJ state
energy). To check our results beyond the leading order
in ∆/EF , we also compute the overlap by solving the
Bogoliubov-de Gennes equations for a one-dimensional
tight-biding chain containing up to 2000 sites. The re-
sults are shown in Fig. 3(c) as a function of J normalized
to the critical value Jc where the system undergoes the
parity-changing quantum phase transition.1–4 The over-
lap between the YSR and dGSJ states decreases as the

exchange coupling increases, but it remains close to unity
even across the quantum phase transition. It is worth
noting that the energy of the YSR excitation shifts away
from that of the dGSJ state as the exchange coupling is
increased. The significant overlap between the two states
suggests that the YSR state primarily descends from the
dGSJ state, with a minor contribution from the contin-
uum states of the proximitized film. Therefore, in a first
approximation, the coupling with the magnetic impurity
can be described by replacing the proximitized film with
a single level representing the dGSJ state.

IV. SINGLE-SITE MODEL

Motivated by the results of the previous section, we in-
troduce a simplified model that replaces the entire prox-
imitized film with a single site representing the dGSJ
state. As we show below, this model is useful for analyz-
ing the coupling between the dGSJ state and a quantum
spin. The Hamiltonian of the single site is given by:

H0 =
∑
σ

Es

(
γ†σγσ −

1

2

)
, (7)

where γσ (γ†σ) are the annihilation (creation) operators
for a dGSJ quasi-particle with spin σ =↑, ↓, and Es is
the eigenvalue of the BdG Hamiltonian (in the absence
of magnetic impurity). As explained in Appendix B, this
Hamiltonian can be recast in terms of electron operators
dσ, d

†
σ as follows:

H0 = U
∑
σ

nσ + [∆sd↓d↑ + h.c.] , (8)

where nσ = d†σdσ; U and ∆s are effective scattering and
pairing potentials, respectively. In terms of U and ∆s,
Es =

√
U2 + ∆2

s. Without loss of generality, below we
discuss the particle-hole symmetric case where U = 0 and
therefore Es = ∆s

Next, we introduce the coupling to the impurity. To
make contact with the classical description employed in
the previous section, we first discuss the Ising limit of the
exchange coupling, i.e.

HIsing
J = J

‖
ddS

z (n↑ − n↓) , (9)

where J
‖
dd > 0 is the exchange coupling with the dGSJ

quasi-particle. This model reproduces the most salient
features of the YSR states described above. To be-
gin with, note that, besides the fermion parity P =∏
σ(−1)nσ = ±1, the impurity spin operator Sz is also

conserved in this limit, i.e.
[
Sz, H0 +HIsing

J

]
= 0.

Thus, the ground state is doubly degenerate correspond-
ing to the two possible orientations of the classical vector
S = ±Sẑ: For Jdd < Jc = 2∆s the ground state is one of
the two following states {|BCS〉 ⊗ | ± 1

2 〉} with P = +1
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Figure 3. Overlap between the YSR wavefunction and the SJdG wavefunction. Panels (a) and (b) show the calculation done
from the continuous model for different SJdG bound state energies and values of EF /∆. Panel (c) shows the same calculation
done with a tight-binding model.

and γσ|BCS〉 = 0. For Jdd > Jc, the ground state is
one in {| ↑〉 ⊗ | − 1

2 〉, | ↓〉 ⊗ | +
1
2 〉} with P = −1 and

|σ〉 = γ†σ|BCS〉. The YSR excitation is a transition be-
tween these two ground states of opposite parity with
excitation energy15,18 |∆s − Jdd/2|. In addition, the odd
parity sector of the Hilbert space also contains the follow-
ing two states: {| ↑〉⊗|+ 1

2 〉, | ↓〉⊗ |−
1
2 〉} with excitation

energy equal to ∆s + Jdd/2. For small Jdd, a transition
from the ground state with P = +1 to these states cor-
responds to the second subgap peak in the LDoS of the
classical approach that shifts up in energy with increasing
exchange and eventually disappears into the continuum,
see Fig 2 (c).

Next, we generalize Eq. (9) by adding the spin-flip
term, which allows the impurity spin to fluctuate:

Hd
J = J

‖
ddS

z (n↑ − n↓) + J⊥dd(S
+d†↓d↑ + h.c.) (10)

As argued in Refs. 14 and 15, the single-site model pro-
vides an economical and fully quantum-mechanical de-
scription of YSR spectra in superconductors which com-
pares well with the results obtained using sophisticated
but computationally expensive methods like the Numer-
ical Renormalization Group (NRG).11 The accuracy of
this description in the present system will be addressed
in the following section.

The spin-flip term, ∝ J⊥dd > 0, has important con-
sequences for the spectrum of the model. In the weak

coupling limit, i.e. for J
‖
dd + 2J⊥dd < 2∆s, (assuming an

unbiased preparation of the system) the ground state is
described by the following density matrix:

ρGS =
1

2

[
|BCS,+ 1

2 〉〈〈+
1
2 , BCS|+ |BCS,−

1
2 〉〈−

1
2 , BCS|

]
, (11)

On the other hand, in the strong coupling limit where

J
‖
dd + 2J⊥dd > 2∆s, the ground state is a singlet:

|GS〉 =
1√
2

(
| ↑〉 ⊗ |+ 1

2 〉+ | ↓〉 ⊗ | − 1
2 〉
)
. (12)

that is, a pure state resulting from the quantum super-
position of the two ground states of the Ising limit of
the model. In weak and strong-coupling regimes, unlike
the conventional classical approach of YSR,1–3 the quan-
tum model predicts that YSR excitations carry no spin
polarization.8

Finally, since in the original model (cf. Eq. 4) the en-
ergy of the YSR does not grow without bound as the ex-
change with the magnetic impurity J becomes arbitrarily

large, the couplings J⊥dd, J
‖
dd cannot be much larger than

∆s in the single-site model. Note that, for large J⊥dd, J
‖
dd

the energy of the YSR grows like max{J⊥dd, J
‖
dd}. Thus,

for the energy of the YSR to remain within the gap, the
exchange couplings of the single-site model must saturate

to an upper bound so that max{J⊥dd, J
‖
dd} . ∆s. There-

fore, they must be regarded as renormalized exchange
interactions, which are also the result of the spectral re-
organization and localization of excitations with energy
∼ ∆s caused by Andreev reflection at the S/N interface.

V. SCALING APPROACH

In order to investigate the accuracy of the single-site
model, we reintroduce the coupling to the continuum of
excitations as a perturbation. Whether this perturbation
changes the low-energy spectrum substantially or not can
be assessed using the poor man’s scaling method,36 as we
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describe in the following.
In the single-site model, the effective exchange cou-

pling of the impurity and dGSJ quasi-particle is Jdd =

J⊥dd = J
‖
dd, where, for the sake of simplicity, we assume

an isotropic coupling. Our conclusions also apply to
the anisotropic case with small modifications. Through
the exchange interaction with the magnetic impurity, the
dGSJ quasi-particles can also couple to the continuum of
excitations of the proximitized film. Let us introduce the
following modified exchange coupling which, besides the
coupling to the dGSJ, describes an impurity-mediated
coupling of the dGSJ-site to the continuum, and will be
treated below as a perturbation:

Hdc
J =

∑
σσ′

(
Jdd d

†
σsσσ′dσ + JΦΦ Φ†0σsσσ′Φ0σ′

)
· S

+ JdΦ

∑
σσ′

(
d†σsσσ′Φ0σ′ + Φ†0σsσσ′dσ′

)
· S.

(13)

The operators Φ0σ,Φ
†
0σ are the annihilation and creation

operators for electrons in the continuum at the position
of magnetic impurity. Phenomenologically, we have as-
sumed different couplings for the various processes in-
volving the scattering of the dGSJ and the continuum
excitations by the impurity. These couplings can be cal-
culated from first principles. However, they depend on
microscopic details of the matrix elements of the impurity
orbitals and the continuum of both subgap and outer-gap
excitations which are difficult to model. For this reason,
we treat their bare values as free parameters in the anal-
ysis below.

We carry out the poor man’s scaling analysis36 of the
model (13) by integrating out the high energy degrees of
freedom from the continuum with energies of the order
of the bandwidth D ∼ EF . Since these band-edge modes
exhibit vanishing superconducting correlations because
their energies are well above the gap, the calculations do
not differ much from those of the standard Kondo scaling
of a magnetic impurity.36 Some details are provided in
Appendix C. In what follows, we focus on the discussion
of the solutions to the scaling equations, which read

dgΦΦ

d`
= g2

ΦΦ, (14)

dgdΦ

d`
= gdΦgΦΦ, (15)

dgdd
d`

= g2
dΦ. (16)

Here gdd = 2ν0Jdd, gdΦ = 2ν0JdΦ, and gΦΦ = 2ν0JΦΦ

are dimensionless couplings, ν0 ∼ 1/D being the mean
density of continuum states. The scaling variable ` is
defined such that the bandwidth is reduced according to
D(`) = De−` → 0 as `→ +∞, where D ∼ EF .

As the bandwidth of the system is reduced, the above
scaling equations imply that the renormalization of gdd
and gdΦ is driven by the growth of gΦΦ. Indeed, Eq. (14)

for gΦΦ is mathematically identical to the scaling equa-
tion for the exchange coupling of a magnetic impurity in
a normal metal (Kondo scaling). It can be readily solved
by the ansatz gΦΦ(`) = (`∗ − `)−1, where `∗ = 1/gΦΦ(0).
Like the ordinary Kondo scaling, `∗ corresponds to the
logarithmic scale where gΦΦ(`) diverges and the pertur-
bative renormalization breaks down. This happens when
the bandwidth becomes of the order of a “Kondo temper-
ature”, TΦ

K , i.e. for `∗ = log
(
D/TΦ

K

)
. Hence, gΦΦ(`∗) ∼ 1

leads to TΦ
K = De1/(2ν0JΦΦ). Note that TΦ

K � ∆s would
imply that the continuum states at energies much higher
than the superconducting gap are strongly coupled to
the magnetic impurity. In this situation, the single-site
description as introduced above breaks down. In the clas-
sical approach, such a strong coupling to the continuum
should result in substantial suppression of the overlap
between the YSR and dSGJ states.

Indeed, the wavefunction overlap Θ (cf. Fig. 3) can be
used to obtain a rough estimate the ratios of the bare cou-
plings gdΦ(0)/gdd(0), and gΦΦ(0)/gdd(0). To this end, we
first notice that gdd ∼ Jdd, gdΦ ∼ JdΦ, and gΦΦ(0) ∼ JΦΦ

contain matrix elements with zero, one, and two powers
of the continuum orbitals, respectively (recall that the ex-
change couplings are second order in the matrix element
describing the tunneling between the impurity magnetic
orbital and the metallic host states). Let γ = 1 − |Θ|
measure the degree of admixture of the YSR state with
the continuum; γ will be enhanced by quantum fluctu-
ations relative to the estimates provided by the classi-
cal approach (cf. Sec. III). Nonetheless, we expect γ
to remain much smaller than one. Thus, gdd(0) ∼ γ0,
gdΦ ∼ γ and gΦΦ ∼ γ2, to leading order in γ. Further-
more, gdd(0) = 2ν0Jdd ∼ ∆s/D ∼ ∆/D � 1 according
to the discussion at the end of the previous section.

Next, we proceed to obtain solutions to the scaling
equations using the above estimates for the initial con-
ditions of the flow. Concerning the solutions of (15)
and (16), we notice that (15) is solved by the ansatz
gdΦ(`) = rdΦ/(`

∗ − `) with rdΦ = gdΦ(0)/gΦΦ(0). In-
troducing this result into Eq. (14) and integrating, we
obtain the following renormalized coupling between the
impurity and the dSGJ:

gdd(`) = gdd(0) +
g2
dΦ(0)

gΦΦ(0)

(`/`∗)

1− (`/`∗)
(17)

Using g2
dΦ(0)/gΦΦ(0) = γ2g2

dd(0)/[γ2gdd(0)] ' γ0gdd(0),
the above expression simplifies to:

gdd(`) '
gdd(0)

1− (`/`∗)
. (18)

which needs to be compared with the behavior of the
renormalized coupling to the continuum after setting
gΦΦ(0) ' γ2gdd(0):

gΦΦ(`) ' γ2gdd(0)

1− (`/`∗)
. (19)
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Note that both couplings diverge at `∗ = log
(
D/TΦ

K

)
with TΦ

K ' De−1/2(ν0γ
2Jdd) � ∆ if γ � 1, which is

consistent with what was discussed above. For instance,
if we choose γ ≈ 0.2 (corresponding to Θ ≈ 0.8), then

gΦΦ(`)

gdd(`)
' γ2 � 1. (20)

Thus, as the continuum states are integrated out, the
impurity remains most strongly coupled to the single
site describing the dGSJ quasi-particle and therefore the
single-site model remains an accurate description of the
magnetic impurity on the proximitized thin film.

Let us close this section by pointing out some poten-
tial problems with the scaling analysis described above.
First of all, like the original poor man’s scaling,36 the
equations are obtained perturbatively. Therefore, the so-
lutions to the scaling equations are valid provided the
couplings remain small compared to unity. This is not a
problem under the above assumptions because the scale
where the couplings diverge `∗ is much smaller than the
superconductor gap and the scaling must be stopped at
the scale of ∆. As we get closer to the gap scale, the
superconducting correlations cannot be neglected, and
taking them into account will modify the flows of the
renormalized couplings. Nevertheless, we should inter-
pret the above analysis as providing information on the
tendency of the high-energy continuum states to couple
to the impurity in the presence of the coupling to the
dGSJ state. In order to follow the renormalization of
the coupling to the continuum from high to low energies,
it would be desirable to carry out calculations using the
NRG and starting from a more microscopic description of
the system, e.g. using model parameters obtained from
first principle calculations. Such calculation should pro-
vide a more quantitative assessment of the accuracy the
single-site model introduced in this work for proximitized
films.

VI. CONCLUSIONS

We have studied the YSR excitations in a thin metal
film proximitized by a superconductor. This has been
carried out by introducing a one-dimensional model of
the metal film/superconductor substrate. We have dis-
cussed the spectrum of this model, which consists of
subgap bound states known as de Gennes-Saint James
(dGSJ) states. We have shown that Andreeev-reflection
at the metal/superconductor interface leads to a substan-
tial spectral reorganization around and below the gap
energy. Next, the spectrum of the system when a mag-
netic impurity is deposited on the metal film has been
also described. Treating the impurity spin as a classi-
cal vector, we have found there is substantial overlap of
the wavefunctions of the Yu-Shiba-Rusinov (YSR) and
the dGSJ states. Motivated by these results, a single-
site model has been introduced. This model replaces the

complexity of the proximitized film with a single-site that
represents the dGSJ quasi-particle excitation and is cou-
pled to the impurity with an effecive change coupling.
The single-site model is exactly solvable and allows us
to go beyond the classical description of the impurity by
treating its spin quantum mechanically. Finally, we have
addressed the accuracy of the single-site model by phe-
nomenologically re-introducing the coupling to the con-
tinuum of excitations of the proximitized film as a pertur-
bation and using the poor man’s scaling method: Under
conditions suggested by the findings of the classical ap-
proach, we have shown that the exchange coupling with
the site that describes the dGSJ quasi-particle excitation
remains the dominant coupling under scaling. Thus, the
continuum of excitations of the proximitized film can be
neglected in a first approximation, and the YSR states
can be regarded as resulting from the exchange interac-
tion of the magnetic (quantum) impurity with the dGSJ
quasi-particles.

The approach used here can be generalized to treat
impurities with higher spin and account for single-ion as
well as magnetic exchange anisotropies. Our results pro-
vide theoretical support for the model used to analyze
the STS spectra reported in Ref. 18. In addition, since
the single-site model introduced here is computation-
ally cheaper than more sophisticated numerical meth-
ods like the numerical renormalization group (NRG)11

or continuous-time Montecarlo,12 it can be used to model
more complex systems such as chains or other nanostruc-
tures of magnetic impurities on proximitized films, which
would be otherwise rather intractable by those methods.
For this reason, we also believe it is worth revisiting the
system studied here using much more sophisticated nu-
merical tools, in order to quantitatively assess the limita-
tions of the single-site model as introduced in this work.
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Appendix A: Two-layer Green’s Functions

As discussed in Ref. 44, the GFs of a composite system (3) can be obtained from the GFs of the constituent
subsystems. We denote the GFs of each subsystem as gi(x, x

′), with i = N,S. Next, we impose the following
boundary conditions:

dgi(x, x
′)

dx

∣∣∣
x=0

= 0,
dgi(x, x

′)

dx′

∣∣∣
x′=0

= 0, (A1)

dgN (x, x′)

dx

∣∣∣
x=−a

= 0,
dgN (x, x′)

dx′

∣∣∣
x′=−a

= 0, (A2)

gS(x→ +∞, x′) = 0, gS(x, x′ → +∞) = 0, (A3)

lim
δ→0+

τ3
dgi(x, x

′)

dx

∣∣∣x=x′+δ

x=x′−δ
=

2m

~2
, lim

δ→0+
τ3
dgi(x, x

′)

dx′

∣∣∣x′=x+δ

x′=x−δ
=

2m

~2
. (A4)

We assume a zero derivative at the vacuum interface, except for the semi-infinite superconductor at x, x′ → ∞, for
which the GFs are assumed to vanish.

Using the above boundary conditions, and assuming continuity of the full GF and its derivative at the N/S interface,
we obtain the following relations:

G(x, x′) =

{
gS(x, x′)θ(x′)∓ gS(x, 0)[gS(0, 0) + gN (0, 0)]−1gS,N (0, x′) , for x > 0, x′ ≷ 0

gN (x, x′)θ(−x′)∓ gN (x, 0)[gS(0, 0) + gN (0, 0)]−1gS,N (0, x′) , for x < 0, x ≷ 0
. (A5)

The GFs for the isolated system are easy to calculate from Bogoliubov-de Gennes equation.38 After that, one can get
the dressed GF from (A5), see [Arnold]. The GF shows a pole with the following energy distribution:

ω√
∆2 − ω2

tan

(
2ma

~2kF
ω

)
= 1 (A6)

Note that by expanding the tangent around zero to the first order we arrive at the same solution as obtained from a
semi-classical argument Eq. (1).

Appendix B: Single site Hamiltonian for a proximitized superconductor

By solving the Bogoliubov-de Gennes equations for the proximitized thin film, the electron field operator at the
position of the magnetic impurity,φ0σ, can be written as follows:

ψ0σ = u0γσ + σv∗0γ
†
−σ + Φoσ. (B1)

We start by changing the basis on the unperturbed Hamiltonian (3), where first two terms described the dGSJ quasi-
particle and Φ0σ describes the modes in the continuum. We now introduce a rotation for the operators creating the
discrete state: (

dσ
d†−σ

)
=

(
cos θ − sin θ
sin θ cos θ

)(
γ0σ

γ†0−σ

)
. (B2)

This rotation leads to (8), where U = Es cos 2θ and ∆s = Es sin 2θ. Furthermore, requiring that

ψ↑ =
√
Zd↑ + +Φ0↑ = u0γσ + σv∗0γ

†
−σ + Φ0↑ . (B3)

Hence, tan θ = −v0/u0 and Z = u2
0 + v2

0 , where U = Es(u
2
0 − v2

0) and ∆s = 2Esu0v0.
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Appendix C: Calculation of the scaling equations

In order to perturbatively obtain the scaling equations of the model introduced in Sec. V, we consider an expansion
of the partition function of the system, i.e.

Z(D) = Z0(D)
〈
T exp

[
−
∫ β

0

Hdc
J (τ)

] 〉
0
, (C1)

in powers of the couplings Jdd, JdΦ and JΦΦ. In the above expression for Z(D) Z0(D) = TreβH0 is the partition function
of the system without magnetic impurity at inverse absolute temperature β = (kBT )−1; 〈. . .〉0 is the expectation value
over the non-interacting grand canonical ensemble defined by H0. The operator HJ(τ) = eH0τHJe

−H0τ , where HJ

is given in Eq. (13), describes the magnetic exchange with the impurity in the interaction representation and T is
the imaginary time-ordering symbol. We have also introduced a parameter, D EF , which is the bandwidth of the
composite thin film and superconductor system.

Following Anderson,36 we shall use perturbation theory to obtain a map onto a system with smaller bandwidth
D′ = D− δD < D. Associated with the bandwidths D and D′, there are also the following characteristic (imaginary)
time scale (in units where ~ = 1) τc = D−1 and τ ′c = (D′)−1 > τc. The lowest order terms of the perturbation series
for the system with bandwidth D read:

Z(D) = Z0(D)

1−
∫
dτ 〈Hdc

J (τ)〉0 +
1

2!

∫
|τ−τ ′|>τc=D−1

dτdτ ′ 〈T
[
Hdc
J (τ)Hdc

J (τ ′)
]
〉0 + · · ·

 , (C2)

where we have made explicit the constraints on τ imposed by the finite bandwidth of the continuum of states described
by Φσ and Φ†σ.

Next, let us integrate out the high energy degrees of freedom contained Φ0σ and Φ†0σ (recall that dσ, d
†
σ describe a

low-energy subgap state and it cannot be integrated out). Such degrees of freedom involve excitations with energies
∼ D above the ground state and therefore determine the short imaginary time behavior of the Green’s functions for
Φσ. Note that, since at excitation energies ∼ D Bogoliubov quasi-particles either behave as electrons or holes (in
other words, either u → 0 or v → 0), the anomalous GFs involving the operator Φ0, ie. 〈T [Φ0↑(τ)Φ0↓(τ

′)]〉0, etc,
vanish for |τ − τ ′| ' τ−1

c . Thus, in the above perturbation series, for |τ − τ ′| ∼ τc, we need to consider only normal
correlations, which take the familiar Fermi liquid form:

〈T
[
Φ0σ(τ)Φ†0σ′(τ

′)
]
〉0 '

ν0δσσ′

(τ − τ ′)
(C3)

for |τ ′−τ | ' τ−1
c , where ν0 is the (mean) density of states of the normal state. Thus, the first non-constant contribution

to the scaling of the couplings stems from the second order term. We first split the integrals over τ, τ ′ according to:∫
|τ−τ ′|>τc=D−1

dτdτ ′ . . . =

∫
|τ−τ ′|>τ ′c=(D′)−1

dτdτ ′ . . .+

∫
τ ′c=(D′)−1>|τ−τ ′|>τc=D−1

dτdτ ′ . . . (C4)

and consider the terms in the second term for which τ ′c > |τ − τ ′| > τc. Expanding the second order term in powers,
corrections to the couplings contained in the first order term are generated at O(J2

dΦ), O(JdΦJΦΦ) and O(J2
ΦΦ). We

explicity evaluate below the O(J2
dΦ) term. The calculations for the remaining terms are similar and not reproduced
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here. Einstein’s convention of repeated index summation is used throughout:

O(J2
dΦ) =

J2
dΦ(D)

2!

∫
τ ′c>|τ−τ ′|>τc

dτdτ ′
{
〈T
[
Sa(τ)Sb(τ ′)

]
〉0
(
saσσ′s

b
λλ′
)
〈T
[
d†σ(τ)Φ0σ′(τ)Φ†0λ(τ ′)dλ′(τ

′)
]
〉0

+ 〈T
[
Sa(τ)Sb(τ ′)

]
〉0
(
saσσ′s

b
λλ′
)
〈T
[
Φ†0σ(τ)dσ′(τ)d†λ(τ ′)Φ0λ′(τ

′)
]
〉0
}

(C5)

=
J2
dΦ(D)ν0

2!

∫
τ ′c>|τ−τ ′|>τc

dτdτ ′

{
〈T
[
Sa(τ)Sb(τ ′)

]
〉0
(
saσλs

b
λλ′

)
(τ − τ ′)

〈T
[
d†σ(τ)dλ′(τ

′)
]
〉0

+ 〈T
[
Sa(τ)Sb(τ ′)

]
〉0
(
sbλσs

a
σσ′

)
(τ − τ ′)

〈T
[
dσ′(τ)d†λ(τ ′)

]
〉0

}
(C6)

= −J
2
dΦ(D)ν0

4

∫
τ ′c>|τ−τ ′|>τc

dτdτ ′
iεabc

[
sa, sb

]
σσ′

|τ − τ ′|
〈T [Sc(τ)]〉0〈T

[
d†σ(τ)dσ′(τ

′)
]
〉0 (C7)

= −J
2
dΦ(D)ν0

2

∫
τ ′c>|τ−τ ′|>τc

dτdτ ′

(
εabcεabfsfσσ′

)
|τ − τ ′|

〈T [Sc(τ)]〉0〈T
[
d†σ(τ)dσ′(τ

′)
]
〉0 (C8)

= −J
2
dΦ(D)ν0

2

∫
τ ′c>|τ−τ ′|>τc

dτdτ ′
1

|τ − τ ′|
〈T
[
d†σ(τ)Sc(τ)scσσ′dσ′(τ

′)
]
〉0 (C9)

In the above derivation we have used the following results: εabcεabd = 2δcd and

T
[
Sa(τ)Sb(τ ′)

]
= θ(τ − τ ′)SaSb + θ(τ ′ − τ)SbSa (C10)

=
1

2
(SaSb − SbSa) [θ(τ − τ ′)− θ(τ ′ − τ)] +

1

2
(SaSb + SbSa) (C11)

=
i

2
εabcScsgn(τ − τ ′) +

{
Sa, Sb

}
(C12)

because Sa(τ) = eH0τSae−H0τ = Sa. As noted above, the operators describing the dGSJ quasi-particle have time
dynamics varying on the scale of ∆−1 � τ ′c, which is very slow compared to the fast degrees of freedom being integrated
out from Φ0c and Φ†c. Introducing τ− = τ − τ ′ and τ+ = (τ + τ ′)/2. Thus, the term proportional to {Sa, Sb} drops
because it is multiplied by τ−1

− rather than |τ−|−1 and the integral over τ− of former vanishes to leading order. Thus,
to leading order in τ−, we are left with

O(J2
dΦ) = −J2

dΦ(D)ν0

∫
dτ+ 〈T

[
d†σ(τ+)S(τ+) · sσσ′(τ+)dσ(τ+)

]
〉0

∫
τ ′c>|τ−|>τc

dτ−
|τ−|

(C13)

= −2ν0
δD

D
J2
dΦ(D)

∫
dτ 〈T

[
d†σ(τ)S(τ) · sσσ′(τ)dσ(τ)

]
〉0. (C14)

In the last expression, we have evaluated the integral over τ− using∫
τ ′c>|τ−|>τc

dτ−
|τ−|

= 2 log

(
τ ′c
τc

)
= 2 log

(
D

D′

)
= −2 log

(
D − δD
D

)
' 2δD

D
, (C15)

and replaced τ+ → τ . Notice that the resulting expression in Eq. (C14) takes the same form as the contribution ∝ Jdd
in the first order term of (C2). This leads to the following recursion relation:

Jdd(D − δD) = Jdd(D) + 2ν0J
2
dΦ(D)

δD

D
(C16)

(C17)
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Assuming the couplings are continuous functions of the cut-offD, the recursion relation becomes a differential equation:

D
dJdd(D)

dD
= −2ν0J

2
dΦ, (C18)

which implies that Jcc increases with decreasing bandwdith D.
Similarly, we can tackle the terms at O(JdΦJΦΦ) and O(JΦΦ) (note the latter one is the only one present in the

standard poor man’s scaling treatment of the Kondo model). From those terms, the following differential equations
are obtained:

D
dJdΦ(D)

dD
= −2ν0JdΦJΦΦ, (C19)

D
dJdd(D)

dD
= −2ν0J

2
ΦΦ. (C20)

It is convenient to introduce a new scaling variable defined by the differential equation:

dD

D
= d`⇒ D(`) = D0e

−`. (C21)

Thus, as `→ +∞ D(`)→ 0. Furthermore, if we define the dimensionless couplings gdd = 2ν0Jdd, gdΦ = 2ν0JdΦ, and
gΦΦ = 2ν0JΦΦ, we finally arrive at the scaling equations (14) to (16) discussed in Sec. V.
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34 E. Cortés-del Ŕıo, J. L. Lado, V. Cherkez, P. Mallet,
J.-Y. Veuillen, J. C. Cuevas, J. M. Gómez-Rodŕıguez,
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