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Orbital-symmetry effects on magnetic
exchange in open-shell nanographenes

Qingyang Du1, Xuelei Su 1, Yufeng Liu2, Yashi Jiang2, Can Li 2, KaKing Yan 1,
Ricardo Ortiz3 , Thomas Frederiksen 3,4 , Shiyong Wang 2,5 &
Ping Yu 1

Open-shell nanographenes appear as promising candidates for future appli-
cations in spintronics and quantum technologies. A critical aspect to realize
this potential is to design and control the magnetic exchange. Here, we reveal
the effects of frontier orbital symmetries on themagnetic coupling in diradical
nanographenes through scanning probe microscope measurements and dif-
ferent levels of theoretical calculations. In these open-shell nanographenes,
the exchange energy exhibits a remarkable variation between 20 and 160meV.
Theoretical calculations reveal that frontier orbital symmetries play a key role
in affecting themagnetic coupling on such a large scale. Moreover, a triradical
nanographene is demonstrated for investigating the magnetic interaction
among three unpaired electrons with unequal magnetic exchange, in agree-
ment with Heisenberg spin model calculations. Our results provide insights
into both theoretical design and experimental realization of nanographene
materials with different exchange interactions through tuning the orbital
symmetry, potentially useful for realizing magnetically operable graphene-
based nanomaterials.

Magnetism in nanographenes has attracted a lot of attention due to
its unique properties such as weak spin-orbit coupling and long spin
coherence time1,2, compared with conventional magnetism originat-
ing from d- or f-block elements. With the development of on-surface
synthesis3–9, multiradical nanographenes can be precisely fabricated
with well-defined π-electron topologies via the design of molecular
precursors10–13, which are ideal platforms for investigating the
underlying mechanism of magnetic-exchange interactions14. To
induce magnetism in nanographenes, embedding substitutional
heteroatoms15–18 or incorporating pentagon rings19–23 have been
employed innanographenes using on-surface synthesis. In addition to
these approaches, sublattice imbalance in a bipartite lattice can also
generate net spins as predicted by the Ovchinnikov’s rule and Lieb’s
theorem24,25. Accordingly, triangulene and its π-extended homologs

have been fabricated26–28, which show high-spin ground states in
agreement with theoretical predictions. For realizing spin-logic
devices or molecular switches at room temperature29,30, robust mag-
netic ordering with large magnetic coupling strength is needed.
Towards this goal, the largest magnetic-exchange coupling has been
reported in rhombus-shaped nanographenes with zigzag periphery
(rhombene)31,32.

Besides the interest in the magnetic properties of triangulenes
and rhombenes, they can also serve asbuilding blocks for constructing
spin networks with collective quantum behaviors to explore quantum
phases ofmatter33–40. The linkers that connect adjacent nanographene
units have played a key role in engineering the magnetic coupling
amongbuilding blocks. As an example12,34,41–43, antiferromagnetism can
be tuned to ferromagnetism by adjusting the C-C bonding sites from
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the same to opposite sublattices. The strength of the magnetic-
exchange interaction can also be manipulated by including a connec-
tion spacer44 or incorporating a pentagon ring that affects the orbital-
density overlap at the connecting region36. However, the effects of
orbital symmetry on the magnetic-exchange interactions have been
rarely addressed,whilst it is known tobe critical for some chemical and
physical processes. For example, a cycloaddition reaction requires the
symmetry of the highest occupiedmolecular orbital (HOMO) to be the
same as the symmetry of the lowest unoccupied molecular orbital
(LUMO)45. More recently, it was fabricated a π-conjugated polymer of
acenes that shows a quantum topological phase transition with an
avoided level crossing of HOMO and LUMO46. Considering finite
multiradical nanographenes, frontier orbitals consist of hybridized
unpaired electrons, hence one may anticipate that their symmetry
should affect the magnetic properties of the molecule47–49.

A previous work by one of us demonstrated that molecular
symmetries are crucial for determining the exchange coupling of
diradical nanographenes50. Inspired by this, we investigated the
effects of the parity symmetry of frontier orbitals on the magnetic-
exchange of open-shell nanographenes. We employ phenalenyl as the
building block to fabricate various nanographene trimers with dif-
ferent conjugation symmetries by using an on-surface synthesis
approach. In experiments, all three phenalenyl groups can be passi-
vated with additional hydrogen atoms on the radical sites. Through
tip-induced dehydrogenation at different passivation sites, three
types of diradicals, that we call D1, D2 and D3, can be obtained, as
shown in Fig. 1a. According to Lieb’s theorem25, D3 has a sublattice
imbalance and thus hosts a net spin of S = 1. For the other diradicals,
although they have balanced sublattices, they may also exhibit open-
shell character by comparing their Kekuléwith non-Kekulé structures,
whose energy cost of having unpaired electrons could be

compensated by the extra Clar sextets (Fig. 1b, c)51. Using a combi-
nation of scanning tunneling spectroscopy (STS) and inelastic elec-
tron tunneling spectroscopy (IETS), we find that D1 and D2 indeed
show localmagneticmomentswith antiferromagnetic coupling. Their
exchange interactions are 20 and 160meV respectively, showing a
factor of 8 variation. Our theoretical calculations suggest that this
huge difference is due to their different frontier orbital symmetries.
We found that distant-neighbor hopping also significantly affects the
magnetic-exchange by including the third-nearest-neighbor hopping
in the calculations. Moreover, we reveal the magnetic ground state
and excited states of a triradical phenalenyl trimer (T) with unequal
magnetic coupling strengths, consistent with Heisenberg spin model
calculations. Our results demonstrate a new approach for effectively
varying the exchange interaction strength in a nanographene through
engineering its frontier orbitals symmetry, which is inspiring for both
theoretical design and practical realization of spintronic devices.

Results
Nanographenediradicals and a triradical obtainedbyon-surface
synthesis and atomic manipulation
To fabricate the previously introduced open-shell nanographenes,
precursor 1 in Fig. 2a is designed as an 8-methyl-naphthalene and a
benzene ring with two bromide substitutes. Precursor 1 was first
deposited on Au(111) with submonolayer coverage and then annealed
to the temperatures of 433 K and 523 K subsequently for triggering
debrominative cycloaddition and cyclodehydrogenation reactions.
As the reaction scheme shows in Fig. 2a, due to the adsorption
handedness, the [2 + 2 + 2] cycloaddition reaction52,53 of three pre-
cursors 1 with the same or opposite adsorption handedness will lead
to different products 2 and 3 formed by three phenalenyl units con-
jugated by the additional formedphenyl ring in different orientations.
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Fig. 1 | Engineering magnetic-exchange interaction of diradical phenalenyl-
based nanographenes through different π-conjugation symmetry. a Chemical
structures of phenalenyl and its corresponding Clar formula. b Three types of

nanographene diradicals and a triradical labeled asD1, D2, D3 and T, respectively.
c Chemical sketch of possible Kekulé and non-Kekulé resonance structures forD1-
D3 and T.
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Figure 2b shows the overview image of the main products 2 and 3 by
using scanning tunneling microscopy (STM), most of which are pas-
sivated by two hydrogen atoms on the phenalenyl units during the on-
surface synthesis process12,42. Upon tip manipulation, the desired
diradicals (D1,D2, D3), as well as the triradical (T), can be obtained by
a voltage pulse at different passivation sites. Their chemical struc-
tures are further characterized by bond-resolved atomic force
microscopy (AFM)measurements54,55, which are shown sequentially in
Fig. 2c, d. In the AFM images of D1, D2 and D3, the remaining
hydrogen passivation site can be observed due to the bright contrast
from the additional hydrogen atom repulsion.

Huge difference ofmagnetic-exchange interactions in diradicals
D1 and D2 measured by spin-flip spectroscopy
The AFM images and the corresponding chemical structures of D1-D3
are shown in Fig. 3a. One of the three phenalenyl units is passivated by
two hydrogen atoms, thus having two unpaired electrons in the π
system. To investigate their magnetic properties, dI/dV spectroscopy
is measured on different positions of D1-D3 as marked in the AFM
images (Fig. 3b)56. For D1, symmetric steps around the Fermi level are
detected at ±20meV, indicating an inelastic excitation11,22. We attri-
bute these to spin-flip processes corresponding to the singlet-triplet
spin excitation, corresponding to an antiferromagnetic coupling of
20meV. In sharp contrast, the corresponding dI/dV spectra taken on
D2 exhibit a substantially increased excitation threshold of 160meV.
Additionally, a more pronounced asymmetric line shape of dI/dV

spectra is observed onD2 compared to that ofD1, sinceD2 has a high-
spin-excitation energy close to its SOMO resonate state, thus leading
to a pronounced height in the negative bias32,57. These results
demonstrate that the exchange interaction strength can have a varia-
tion of about oneorder-ofmagnitude just by changing the conjugation
symmetry. (The corresponding d2I/dV2 spectra can be found in Sup-
plementary Fig. 16). Regarding D3, as predicted by Lieb’s theorem in
Fig. 1b, it should have an open-shell triplet ground state, which was
confirmed by a Kondo peak feature at the Fermi level in the dI/dV
spectra (Fig. 3b)12,42. To visualize the spatial distribution of the spin
excitation and the Kondo effect, dI/dVmaps recorded at the excitation
energies of ±20meV, ±160meV, and the Fermi energy are shown in
Fig. 3c, respectively. They all agreewell with the simulated STM images
using the singly- occupied orbitals from Fig. 3c, suggesting that the
studied diradical nanographenes have an open-shell ground state.
Moreover, the large range of the dI/dV spectrameasured onD1 andD2
(Supplementary Fig. 17), in which the singly-occupied and singly-
unoccupied molecular orbitals (SOMOs/SUMOs) are detected, further
confirm their magnetic ground states.

Orbital symmetry effects on the exchange interaction investi-
gated by theoretical calculations
The magnetic ground states of the diradicals have been addressed by
calculations atdifferent levels. SinceD3hosts a high-spin ground state,
that is well understood by theory25 and experiments42,43 due to its
sublattice imbalance, we focus on the competing cases of D1 and D2
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annealing and tip-induced dehydrogenation. b Overview STM image (V = 300mV,
I = 50 pA) after annealing precursor 1 on Au(111), revealing individual molecules.
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(Fig. 4). According to simple, but illustrative mean-field Hubbard
(MFH) calculations (Supplementary Table 1), both cases have an open-
shell S =0 ground state and an S = 1 first excited state, suggesting that
the energy cost of introducing two unpaired electrons is smaller than
the energy gain of adding two Clar sextets (cf. Figure 1b). To calculate
the excitation energy of the diradicals and address the enhanced
electron-electron interactions in such small nanographenes, complete
active space Hubbard (CAS-Hubbard) calculations58 and a robust
quantum chemistry method (CASSCF-NEVPT2) were performed59–62.
The spin density distributions, calculated with MFH, are shown in
Fig. 4a. Although D1 and D2 share the same (singlet) ground and the
first excited (triplet) magnetic states, the strength of their exchange
coupling varies substantially according to CAS-Hubbard and CASSCF-
NEVPT2 results (Fig. 4b), which is consistent with the experimental
evidence that D2 has a much larger exchange coupling than D1. The
CASSCF-NEVPT2 method appears to overestimate the spin-excitation
energy in D2, which can be attributed to a further renormalization as
consequence of the surface. On the other hand, the CAS-Hubbard
method (only considering the nearest-neighbor hopping term) clearly
overestimates (underestimates) the spin-excitation energy of D1 (D2)
for typical values of U (|t| <U < 2.2|t|). To rationalize the experimental
results, we find it necessary to add a third-nearest-neighbor hopping

term in CAS-Hubbard (t3 = –0.4 eV), suggesting that distant-neighbor
hopping processes may play an important role in the exchange cou-
pling in D1 and D2.

Figure 5 depicts the physical nature behind such large varia-
tions. To understand this mechanism, theMFH frontier orbital wave
functions of molecules D1 and D2 are calculated without electron-
electron interactions (U = 0). The HOMO and LUMO are shown in
Fig. 5a, where the middle dashed lines represent the mirror plane
normal to the π system. The HOMO of D1 is antisymmetric with
respect to the mirror plane, while the HOMO of D2 is symmetric.
We notice that the different frontier orbital symmetry changes
the orbital-density overlap at the linkers, and thus modifies the
exchange coupling. As highlighted in Fig. 5b, the HOMO wave
function ofD1 is antisymmetric with respect to themirror plane and
propagates in the upper branch of the molecular backbone. Thus,
the singly-occupied orbital-density per site at the connecting region
(dashed box) of D1 is effectively reduced, resulting in a smaller
exchange interaction strength for D1. In contrast, D2 has a sym-
metric HOMO, wave function that does not propagate in the upper
branch of the molecular backbone. Therefore, the singly-occupied
orbital-density distribution is not reduced at the connecting region
for D2. As a consequence, D1 has a smaller coupling strength than
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D2 due to the reduced orbital-density overlap at the connecting
region.

Orbital symmetry does not only affect the orbital-density dis-
tributions at the connections, but also the effective coupling through
distant-neighbor hopping. As shown in Fig.4b, although the calculated
exchange interactions ofD1 is smaller than that ofD2 only considering
the t1 hopping term, the exchange interaction of D1 and D2 obtained
by CAS-Hubbard is remarkably different from the experimental values.
To quantitatively explain the experiments, we find that including a t3
hopping term causes the exchange interaction to decrease for D1,
while increases forD2, now in better agreement with the experimental
values. These results suggest that the t3 term also has an impact on the
exchange interaction, that is included in the CASSCF-NEVPT2 calcula-
tion. (The next-nearest hopping t2 of the honeycomb lattice is less
important in our case, cf. Supplementary Fig. 19). This mechanism is
illustrated by the linear combinations ψL,R =

1ffiffi
2

p ðψHOMO ±ψLUMOÞ as
shown in Fig.5c, where in all cases ψL,R are spatially separated, and
localized at the left or right side of the diradical. The t3 hopping effect
on the coupling strength can be captured by considering the effective
hopping t3 between ψL and ψR, defined as <ψL∣Ĥt3∣ψR>. At the con-
necting region, the orbital sign at two sites connected by t3 is the same
forD1with antisymmetric HOMO, but opposite forD2with symmetric
HOMO (as marked by red/blue arrows in Fig. 5c). The change of
HOMO-LUMO energy gap depends on <ψL∣Ĥt3∣ψR>, which is negative
for D1 and positive for D2 considering the value of t3 is negative for
graphene systems63. As shown in Fig. 5d, the HOMO-LUMOenergy gap
of D1 (D2) decreases (increases) with the increased magnitude of t3,
suggesting a reduced (enhanced) effective coupling strength. As a

result, a difference of about one order-of magnitude of the magnetic
exchange in the diradicals can be realized by tuning frontier orbital
symmetries as well as the third-nearest-neighbor hopping.

Electronic and magnetic properties of triradical T
In addition, a triradical can also be studied with our molecules. All
extra hydrogen atoms can be dissociated by voltage pulses, thus
resulting in a nanographene with three unpaired electrons
(Fig. 6a–c). Among these three radical sites, two of them have a
ferromagnetic interaction, while the other two pairs have different
antiferromagnetic interactions. The unequal coupling compete in
this triradical system. dI/dV spectra are measured at different sites
as marked in Fig. 6a. As we can see in Fig. 6d, a Kondo feature is
detected at the Fermi level at position 3, while the spin-flip features
with an excitation threshold of 160meV are observed at positions 1
and 2. The spin-excitation dI/dV maps and the Kondo map are
shown in Fig. 6e. These results suggest that this triradical nano-
graphene has a ground state of S = 1/2. To understand this system, a
Heisenberg spin trimer model (Fig. 6f) was solved, the calculation
results from Fig. 6g demonstrate that the ground state has S = 1/2
and the other two excited states are nearly degenerate with an
excitation gap of ∼160meV. CAS-Hubbard calculations have been
performed to address spin correlations among these unpaired
electrons, showing a good correspondence with the spin model
(Fig. 6f). The excitation energy between the S = 1/2 ground state
and the S = 3/2 first excited state are illustrated as a function of U/|t|
in Fig. 6h. The excitation energy between S = 1/2 and S = 3/2 is
170 meV considering U/|t| = 1.3 comparable with the Heisenberg
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spin model calculations. The spin correlators among the three
unpaired electrons are calculated through the term
<Ψ∣Sz ið ÞSz jð Þ∣Ψ>, withΨ being the CAS-Hubbard ground-state wave
function and Sz the spin operator. As shown in Fig. 6i, the calculated
spin correlator maps show the antiferromagnetic unpaired elec-
trons at the top-right and bottom are strongly correlated, while the
one at the top-left is almost uncoupled from the others, in agree-
ment with experiments.

Discussion
In summary, we have demonstrated an approach for varying the
magnetic-exchange interaction in π-conjugated open-shell nano-
graphenes upon tuning the frontier orbital symmetries. Combined
with different levels of theoretical calculations and scanning probe
microscope measurements, the chemical and electronic structures of
various diradical nanographenes have been investigated on surfaces.
As the theoretical calculations have demonstrated, their coupling
strengths can vary by one order-of-magnitude (20 −160 meV) via flip-
ping the HOMO/LUMO symmetry. Moreover, the competition among

three unpaired electrons with unequal magnetic coupling strengths
has been demonstrated, in agreement with Heisenberg spin model
calculations. Our results provide insights for obtaining magnetic-
exchange interaction in a large-scale through tuning frontier orbital
symmetry, which could extend the design strategy for realizing
graphene-based spintronic nanomaterials in the future.

Methods
Sample preparation and STM/AFM measurements
The STM/AFM experiments for the electronic and chemical structure
characterization were performed at 4.7K with commercial Createc
LT-STM/qplus AFM. The Au(111) single-crystal was cleaned by cycles of
argon ion sputtering and subsequently annealed to 800K to get
atomically flat terraces. Molecular precursors 1 were thermally
deposited on the clean Au(111) surface, and subsequently annealed to
433K and 523K to fabricate structure 2 and 3, The AFMmeasurements
were performedwith the qPlus sensorwith the resonance frequencyof
32.6 KHz and the oscillation amplitude of 50pm. dI/dVmeasurements
were performed with an internal lock-in amplifier at frequency of
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862Hz. Lock-in modulation voltages for individual measurements
were provided in the respective figure caption. All STM/STS and AFM
measurements were acquiredwith CO-functionalized tungsten tip. For
the constant-height AFM images, the tip-distance is decreased a few
hundred of pm from the STM set point V = 300mV, I = 50 pA.

Tight binding (TB) and mean-field Hubbard (MFH) modeling
The tight-binding (TB) calculationswere carriedout in theC2pz-orbital
description by numerically solving the Mean-Field-Hubbard

Hamiltonian:
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Fig. 6 | Electronic andmagnetic characterization of the triradical T. a, b, c STM
image (V = 300mV, I = 100pA), bond-resolvedAFM image, andmolecularmodel of
T. d dI/dV spectra acquired at different positions marked with filled circles in (a).
e Constant current dI/dV maps acquired at ± 160mV for spin excitations (I = 300-
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f Schematic spin model with the experimental excitation energies as magnetic
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Heisenberg energy levels of the spin model. h Energy difference between first
excited state and open-shell ground state (GS) of T calculated in CAS (3,3) plotted
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denote spin up/down density distribution.
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atomic site i and j, U the on-site Coulomb repulsion parameter
(with U =3:5 eV used here), ni,σ the number operator and ni,σ

� �
the

mean occupation number at site i. Numerically solving the model
Hamiltonian yields the energy Eigenvalues Ei and the correspond-
ing Eigenstates αij (amplitude of state i on site j) from which the
wave functions are computed assuming Slater type atomic
orbitals:

ψi ~r
� �

=
X
j

ai, j � ðz � zjÞexpð�ζ ∣~r� ~rj ∣Þ ð2Þ

with ζ = 1:625 a:u: for the carbon 2pz orbital. The charge density map
ρ x,yð Þ for a given energy range εmin,εmax

	 

and height z0 = 3:5Å is then

obtained by summing up the squared wave functions in this chosen
energy range:

ρ x,yð Þ=
X

i,εi2 εmin,εmax½ �ψ
2
i ðx,y,z0Þ ð3Þ

Constant charge density maps are taken as a first approximation
to compare with experimental STM images.

Complete active space (CAS) Hubbard and CASSCF-NEVPT2
The CAS-Hubbard calculations are performed as the previous work
reported50. For T, a CAS (3,3) wave function was selected. The energies
calculated by the CAS-Hubbard method used the hopping parameters
of t1 = –2.7 eV, t2 = –0.1 eV and t3 = –0.4 eV.We also performed ab-initio
quantum chemistry calculations (CASSCF), with orbitals calculated
withDFTwith a PBE functional.We choseCAS(10,10) and 7 roots forD1
and CAS(12,12) and 6 roots for D2, and then corrected with second-
order N-electron valence state perturbation theory (NEVPT2).

Data availability
All data generated in this study are available within the article and
supplementary information, or from the corresponding authors upon
request. Source data are published alongside this paper. Source data
are provided with this paper.

Code availability
The tight-binding calculations were performed using a custom-made
code on the MATLAB platform. Details of this tight-binding code can
be obtained from the corresponding author on request.
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