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I propose monoradical nanographenes without C3 symmetry as building blocks to design two-
dimensional (2D) carbon crystals. As representative examples I study the honeycomb and Kagome
lattices, showing that by replacing the sites with olympicene radicals the band dispersion near
the Fermi energy corresponds, respectively, to that of Kekulé/anti-Kekulé graphene and breathing
Kagome tight-binding models. As a consequence, finite islands of these new crystals present corner
states close to the Fermi energy, just like the parent models. In the case of Kekulé/anti-Kekulé
graphene, such states are topologically protected, standing as examples of second-order topological
insulators with a non-zero Z2- or Z6-Berry phase. Differently, those of the breathing Kagome
lattice are of trivial nature, but the ground state has been predicted to be a spin liquid in the
antiferromagnetic Heisenberg model. Hence, 2D systems made of low-symmetric nanographenes
may be convenient platforms to explore exotic physics in carbon materials.

The design, synthesis and characterization of low-
dimensional forms of carbon have been a priority for re-
searchers in the past decades1–3. Considering the numer-
ous possibilities, open-shell nanographenes were among
the most challenging because of the high-reactivity
of unpaired electrons, and just recent on-surface syn-
thesis experiments has offered the necessary control
for obtaining islands4–14 and ribbons15–20 with pristine
edges. However, whilst the characterization of either
molecules or one-dimensional systems21 has been suc-
cesful, only 2D networks of open-shell nanographenes
with heteroatoms22,23 or low crystallinity24 exist beyond
theory25–30. In this Letter, I will present three new 2D
carbon crystals that are well described by model Hamilto-
nians where exotic physics is expected31–37, showing the
interest inherent in nanographenes as building blocks of
periodic systems.

Nanographenes with only rings formed by an even
number of sites are classified as bipartite, where NA,B

count the sites that belong to the A and B sublattices.
When there is an imbalance between NA and NB , it
is impossible to accomodate all the double bonds with-
out leaving unpaired electrons that appear as zero en-
ergy states (NZ) in the non-interacting spectrum38,39

(NZ ≥ |NA − NB |). Such non-bonding electrons are
strongly localized at the majority sublattice, originating
local moments in the presence of interactions40,41, and
permitting the realization of magnetism42 with no need
of d, f -electrons.

States with |E| > 0 are usually separated by a big gap
from E = 0 states (δ/2 > 1eV ). Hence, when radical
graphene fragments are covalently linked, we may often
consider negligible the hybridization of the states out of
the gap with those pinned at the Fermi energy26 (EF =
0). As a consequence, the latter behave effectively as sin-
gle orbitals when arranged in a structure of higher dimen-
sionality. We can take as an example a 2D honeycomb
crystal made of triangular nanographenes26–29, known as
[n]triangulenes, where 3n is the number of zigzag car-
bon atoms and |NA − NB | = n − 1. Thus, in a spin
unpolarized approximation, a 2D honeycomb network
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FIG. 1: a), b) Chemical structure of Ol and EOl molecules.
c), d) First-neighbours TB eigenvalue spectra near the Fermi
energy of Ol and EOl, respectively, with t = −2.7eV. Insets
are the probability distribution of the zero energy state (ϕz).

of [2]triangulenes (phenalenyls43,44) is artificial graphene
with gapless Dirac cones26,27, but with a smaller band-
width because the effective hopping between two zero
energy states is a fraction of the first-neighbours C-C
hopping (|t̃| < |t|).
In a 2D phenalenyl crystal the isotropic coupling be-

tween the phenalenyls is due to the C3 rotational invari-
ance of this molecule. In the following I will show that
by selecting a building block that lacks this symmetry
(Fig. 1) we may induce anisotropy in the effective hop-
pings of the zero energy states, forming new materials
that can be described by 2D models with an anisotropic
factor (|tintra/tinter| ≠ 1). Among the several possibili-
ties, the three selected examples are: Kekulé graphene
(KG, Fig. 2a), anti-Kekulé graphene (anti-KG, Fig. 2b)
and the breathing Kagome lattice (BKag, Fig. 2c); where
the first two are expected to be second-order topological
insulators31,32, and for the latter the ground state is pre-
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dicted to be a spin liquid in the strong coupling limit35–37.
In this Letter three things are calculated to prove the

correspondence between the systems from left and right
panels of Fig. 2. First, the spin unpolarized bands of the
carbon crystals and models31,45 showed a fair similar-
ity, anticipating comparable low-energy physics. Second,
the crystals from Fig. 2d (e) presented the same second
Stiefel-Whitney number w2 and non-zero ZQ-Berry phase
(γQ) as Kekulé (anti-Kekulé) graphene31,32, so they are
topologically similar: w2 = 1 (w2 = 0) and γ2 = π
(γ6 = π). Third, finite islands host corner states, with
or without topological protection, as it is the case of the
models31,32,46–49.
The results of this manuscript are obtained with dif-

ferent levels of theory. First, a tight-binding (TB) model
with just one pz orbital per atom and first-neighbours
hopping (t = −2.7eV). Particularly, for the crystal from
Fig. 2e an additional third-neighbours hopping (t3 =
0.12t) is included to hybridize the, otherwise discon-
nected, zero energy states. Then, for the fully interacting
picture, Density Functional Theory (DFT) calculations
are done with the Quantum-Espresso package50–52 and
the Perdew-Burke-Ernzerhof (PBE) density functional53

for C and H atoms. Finally, for computing the local mo-
ments I used a collinear mean-field approximation of the
Hubbard model (see supp. mat.54 for details).
The olympicene radical4 (Ol, Fig. 1a) is a small

nanographene with |NA − NB | = 1, and therefore one
zero energy state (ϕz) in the TB eigenvalue spectrum
(Fig. 1c). Different from phenalenyl’s ingap state, ϕz

does not diagonalize the C3 rotation operator. Because
of this, there are just two equivalent positions (instead
of three) that lead to the same hopping matrix element
between ϕz orbitals of two Ol molecules:

t̃ ≡ ⟨ϕz,1|Ht|ϕz,2⟩, (1)

where Ht is the TB Hamiltonian connecting
nanographenes 1 and 2.

A unit cell made of Ols then results in a 2D periodic
system with different effective inter- and intracell hop-
pings (|t̃inter| ̸= |t̃intra|). The case of honeycomb lattices
made of Ols will be analyzed, where I study two possi-
ble relative orientations between the Ol in a unit cell of
six molecules: a crystal where the Ols are linked by two
(three) covalent bonds with the adjacent Ols that are in
(out) the unit cell (KOl, Fig. 2d), and a crystal made of
Clar’s goblets that differ in 60◦ in parallel to the plane
(anti-KOl, Fig. 2e).

In the first one of them (KOl), the effective intercell is
stronger than the intracell hopping (|t̃inter| > |t̃intra|), be-
ing described by a KG model Hamiltonian32,33 (Fig. 2a).
Adding a Kekulé anisotropy to the graphene TB model
opens up a gap in the otherwise gapless band structure
(Fig. 3a), which then holds a good correspondence with
the first TB bands of the nanographene crystal (Fig. 3d).
It can be seen how the first-neighbours coupling between
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FIG. 2: Crystalline structures of a)-c) the model anisotropic
Hamiltonians and d)-f) the three nanographene crystals un-
der study. The blueish hexagons are the unit cells of each
crystal, and a⃗1,2 are the lattice vectors. The dashed and solid
lines in panels a)-c) account for weaker and stronger bonds,
respectively.

the zero energy states causes t̃ to be a considerable frac-
tion of t, making the upper bands to cross higher-energy
bands. In addition there is a quantitative mismatch with
KG for tinter(tintra) = t̃inter(t̃intra), since the contribution
of E ̸= 0 states from the Ols to the direct gap might not
be totally negligible.

Next I study the case of the 2D crystal of Clar’s
goblets, where it happens the opposite hopping relation
(|t̃inter| < |t̃intra|) and the effective model is anti-KG (Fig.
2b). As before, hopping anisotropy opens up a gap (Fig.
3b), but the band dispersion is different than with the
Kekulé distorsion31. The TB band structure of the anti-
KOl crystal is very similar to that of this model (Fig. 3e).
In this case, the band structures are in a better quantita-
tive agreement when the hoppings of the anti-KG model



3
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MODEL HAMILTONIAN NANOGRAPHENE CRYSTAL

anti-KOl
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FIG. 3: Spin-unpolarized band structure calculated with a
TB model for a) KG, b) anti-KG, c) BKag and (red solid
line) d) KOl, e) anti-KOl, f) KagEOl. Just a first-neighbour
hopping t = −2.7eV was considered for the nanographene
crystals, except for the system of panel e) where a third-
neighbour hopping was included (t3 = 0.12t). For the effective
models the hoppings where chosen to match t̃inter and t̃intra
of the nanographene systems (tinter = −1.39eV and tintra =
−0.53eV for KG, tinter = −60meV and tintra = −92meV for
anti-KG, tinter = 78meV and tintra = 35meV for BKag). In
d)-f) the black dots are the spin unpolarized band structure
for the same crystals calculated with DFT.

match those of t̃intra and t̃inter of anti-KOl, as a conse-
quence of a smaller hybridization between the different
ϕz since they are coupled just by t3.
For the third system I tried to design a 2D carbon crys-

tal that would model the Kagome lattice with a breathing
hopping anisotropy (Fig. 2c). A reasonable first attempt
would be to link three Ol that form the unit cell of a tri-
angular lattice. However, the obtained non-interacting
band structure did not resemble to anything remotely
similar to the bands of BKag45, which should be a flat
band followed by a gapped Dirac cone at K (Fig. 3c).
This is undoubtedly caused by the large hybridization
between ϕz states, since artificially decreasing the hop-
pings connecting the Ol molecules reveals the, otherwise
hindered, Kagome-like bands (Fig. S1).

In order to correctly find a 2D nanographene with the
same band structure than the fermionic BKag model, we

need to make the effective hoppings smaller in a more
realistic way: for instance, by shrinking the wavefunc-
tion coefficients at the linking sites. This can be done
by selecting a monoradical with more C atoms than Ol,
like an Ol molecule but with acene units as ”legs” (Fig.
S2). However, the unit cell now is not planar because
of a steric hindrance between two H atoms, which can
be avoided by enlarging the Ol skeleton in the horizontal
direction that leads to the monoradical from Fig. 1b,d
(hereafter, extended-Ol or EOl), correctly keeping the
planarity of the Kagome-like crystal. This 2D carbon
system (KagEOl, Fig. 2f) finally presents a TB band
structure with a flat band and a gapped Dirac cone (Fig.
3f), in good agreement with the BKag model.
To show the robustness of these results I further com-

pute the interacting spin unpolarized band structures for
KOl, anti-KOl and KagEOl employing DFT and the PBE
exchange-correlation functional. The geometries were
properly relaxed under the BFGS quasi-Newton algo-
rithm, with no deviation from planarity, which justifies
the previous single-orbital per atom approximation. In
Fig. 3d-f (black dots) the calculated bands are clearly
comparable with those from the TB model (red lines),
and therefore confirm that their low-energy physics can
be anticipated by the anisotropic models from Fig. 2a-c.
KG and anti-KG31,32 are predicted to be second-

order topological insulators55–57 (SOTI) with (D − 2)-
dimensional modes, i.e., corner states. In inversion-
symmetric spinless 2D models there is a Z2 invariant (w2)
that characterizes SOTI, known as the second Stiefel-
Whitney number58,59:

(−1)w2 =

4∏
i=1

(−1)⌊N
−
occ(Γi)/2⌋, (2)

where ⌊⌋ is the floor function and N−
occ is the number of

occupied bands with odd parity in the four time reversal
invariant momenta (Γi), which are Γ and three M points.
Materials with non-zero w2 are called Stiefel-Whitney

insulators (SWI)60–62. This Z2 invariant can be easily
calculated from the parity eigenvalues of the bands at
half-filling, and KG is correctly predicted to be a SWI32

since a band inversion63 at Γ leads to N−
occ(Γ) = 0,

N−
occ(M) = 2 and w2 = 1. On the other hand, anti-

KG has no band inversion, therefore Γ and M present the
same number of occupied odd-parity bandsN−

occ(Γ,M) =
2, that yields w2 = 0, and in principle it should be a triv-
ial insulator32. Similarly, I compute the parities of the
occupied bands of KOl and anti-KOl, whereN−

occ(Γ) = 27
and N−

occ(M) = 29 for the former, and N−
occ(Γ,M) = 29

for the latter. This leads to w2 = 1 and w2 = 0, respec-
tively, in good correspondence with the two anisotropic
graphene models.

According to the previous paragraph, KOl (anti-KOl)
is predicted to be a Stiefel-Whitney (trivial) insulator,
like KG (anti-KG) if we attend to w2. However, it has
also been suggested in several works31,64,65 the use of



4

a)

d) f)

c)b)

e)

FIG. 4: a)-c) Single-particle spectra calculated with the TB model for finite islands of KOl, anti-KOl and KagEOl, respectively.
d)-f) Propability distribution of the corner states. d) and e) correspond to the first of the six ingap states in panels a) and
b). f) is the first state above EF of panel c), which is EF ≈ −2meV. In the three cases a first-neighbours hopping t = −2.7eV
was considered. For panels b) and e) an additional t3 = 0.12t was included. At half-filling, two electrons in total populate the
corner states at EF in c).

the ZQ-Berry phase (γQ) as a topological invariant to
characterize SOTI phases:

γQ =

∫
L

dΘ ·A(Θ), (3)

where the integral goes over a path L in a Q − 1 pa-
rameter space Θ = (Φ1,Φ2...ΦQ−1), A(Θ) is the Berry
connection:

A(Θ) = −i⟨Ψ(Θ)|∂ΘΨ(Θ)⟩, (4)

and Ψ(Θ) is the many-body ground state of a non-
interacting Hamiltonian H(Θ) = h0(Θ) + (H − h0) with
a local twist described by tj → tje

iΦj . This Hamiltonian
is defined on a finite system with periodic boundary con-
ditions (PBC), where h0 contains the bonds (tj) that will
have the twist in h0(Θ). Particularly, in the anisotropic
graphene models h0 is the part of an individual cluster
from a cluster-limit (see supp. mat.54 or references31,64,65

for more details).
Such Berry phase allows the characterization of differ-

ent non-trivial topological phases with cluster-limits that
differ in symmetry31,65. For instance, for each anisotropic

graphene model we can define a cluster-limit setting the
weaker bond to zero, that consists in a set of disconnected
dimers or hexamers (Fig S3). The C2 or C6 symmetries
from these clusters permit the quantization of the Berry
phase in Z2 or Z6, respectively, obtaining a calculated
ZQ-Berry phase for KG (anti-KG) of γ2 = π (γ2 = 0)
but γ6 = 0 (γ6 = π). This means that both are SOTI
with different limits that cannot be adiabatically trans-
formed one into the other without closing the gap31,65.

Analogously, for KOl and anti-KOl the local twist
needs to be considered for every hopping (either t or
t3) that connects Q Ol molecules (Fig S4). The nu-
merical Berry phases, calculated for KOl (anti-KOl), are
γ2 = π (γ2 = 0) and γ6 = 0 (γ6 = π), indicating that
their ground states are adiabatically connected to cluster
states formed by a collection of disconnected Ol dimers
(hexamers, Fig S3). Consequently, like the anisotropic
graphene models, these carbon crystals should be ex-
pected to be SOTI, and hexagonal islands will present
six single-particle ingap states that are strongly localized
at the corners (Fig. 4a,b,d,e).

It is worth to mention that the presence alone of
corner states does not ensure a higher-order non-trivial
topology47. It is needed a bulk-boundary correspondence
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2D system Ũ/U t̃inter/t t̃intra/t

KOl 0.14 0.515 0.196

anti-KOl 0.14 0.022 0.034

KagEOl 0.09 -0.029 -0.013

TABLE I: Effective on-site Coulomb repulsion and hopping
matrix elements in the inter- and intra-cell directions for the
Ol and EOl radicals in the KOl, anti-KOl and KagEOl crys-
tals.

between the bulk topology and the existence of such
states. If that is the case, then there is a topological pro-
tection as long as certain symmetries are respected. We
can make the appropiate tests on KG, anti-KG, KOl and
anti-KOl, showing the robustness of their corresponding
corner states (Figs S5, S6, S7). The BKag model, on the
other hand, also presents corner states but fragile against
perturbations48,49. For some years it was thought that
this model was also a SOTI, but its corner states are ac-
tually from trivial origin48,49, hence the Z3-Berry phase
is not a good topological invariant for this system47. In
any case, I show in Fig. 4c,f that a finite island of Ka-
gEOl has also corner states, but different to KOl and
anti-KOl, and similar to BKag, not robust against per-
turbations (Fig S8).

I next briefly discuss the spin-polarized picture, which
is relevant for realistic radical nanographenes prone to
develop local moments41,44,66 depending on the Ũ/|t̃| ra-
tio:

Ũ/|t̃| = U
∑
i

|ϕz(i)|4/|t̃|, (5)

where the sum runs over sites i and
∑

i |ϕz(i)|4 is the
inverse participation ratio.

For the KOl unit cell, zero energy states from two Ol
molecules have a high hybridization both in the inter- and
intra-cell directions (Table I), that leads to Ũ/|t̃|inter =

0.41 and Ũ/|t̃|intra = 1.07, with an on-site Coulomb re-
pulsion U = 1.5|t|. Two hybridized nanographenes pre-

serve the open-shell character if Ũ ≫ |t̃|, breaking down

the picture when Ũ and |t̃| are comparable44, so KOl is
probably non-magnetic. Anti-KOl, on the other hand,
has an intermolecular hybridization that is one order
of magnitude lower because the ϕz states are just cou-
pled by t3 (Table I). In that case, Ũ/|t̃|inter = 9.54 and

Ũ/|t̃|intra = 6.18, for U = 1.5|t|, which suggests that all
the Ol units have local moments. This is supported by
calculations of the spin density per site done with a mean-
field Hubbard model, where an hexagonal island of KOl
just presents localized moments at the corners, while a fi-
nite island of anti-KOl has magnetization at every single
Ol molecule for the same value of U (Fig S9).
Hatsugai and coworkers67 suggested the emergence of

a novel phase in interacting SOTI known as the higher-
order topological Mott insulator (HOTMI), characterized

by the spin counterpart of γQ. In this topological state
correlation annihilates the gapless charge excitations of a
SOTI, hosting instead gapless spin excitations at the cor-
ners. Consequently, if interacting KG and anti-KG are
HOTMIs (and hence also KOl and anti-KOl), free spins
should appear localized at the corners67. The particular
case of the BKag lattice is also very interesting, since
the presence of non-alternant rings promotes magnetic
frustration, which stabilizes the emergence of a spin liq-
uid ground state in the antiferromagnetic (AF) S = 1/2

Heisenberg model35–37. The KagEOl crystal has a Ũ/|t̃|
ratio fairly away from the Ũ ≈ |t̃| scenario (Table I) be-
cause of the reduced weight of ϕz in the linking atoms
(Ũ/|t̃|inter = 4.66 and Ũ/|t̃|intra = 10.38, for U = 1.5|t|).
As it happens with anti-KOl, every EOl unit has lo-
cal magnetization in a mean-field Hubbard calculation.
Thus, I suggest that it might be well described by a spin
model. In any case, whether KOl and anti-KOl are HOT-
MIs, or KagEOl has actually a spin liquid ground state,
would be the aim of future work.

In conclusion, monoradical nanographenes with no C3

symmetry serve as building blocks for 2D systems de-
scribed by anisotropic models. The three proposed crys-
tals, called here KOl, anti-KOl and KagEOl, held com-
parable spin-unpolarized band structures than KG, anti-
KG and BKag, respectively, showing also corner states
in finite islands. KOl and anti-KOl have the same
w2 and Z2,6-Berry phases than KG and anti-KG, so
they are also SOTI, and form part of a growing list of
carbon materials with predicted higher-order topology
like graphdiyne60,68 or graphene antidots69. The non-
interacting model Hamiltonians mentioned through this
work have been relevant in photonic70,71 and acoustic
systems72,73, among others74,75, but electronic correla-
tion is important in nanographenes that can develop lo-
cal magnetic moments. According to the Ũ/|t̃| ratio, KOl
is likely to be non-magnetic, but anti-KOl and KagEOl
might be well described by spin models, thus we can ex-
pect the latter to host a spin liquid ground state with
potential applications in topological quantum computing.
All of these results should fuel the already increasing in-
terest towards 2D nanographene crystals, whose general
growth on surfaces may become a reality in the incoming
years.
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Rossier, J. C. Sancho-Garćıa, T. Mizoguchi and Y. Hat-
sugai for fruitful discussions. This work was funded
by the Spanish MCIN/AEI/ 10.13039/501100011033
(PID2020-115406GB-I00), and the European Union’s
Horizon 2020 (FET-Open project SPRING Grant
No. 863098).

contact e-mail: roc6493@gmail.com



6

1 H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and
R. E. Smalley, “C60: Buckminsterfullerene,” Nature 318,
162 (1985).

2 S. Iijima, “Helical microtubules of graphitic carbon,” Na-
ture 354, 56 (1991).

3 K. S. Novoselov, A. K. Geim, S. V. Morozov, D.-e. Jiang,
Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A.
Firsov, “Electric field effect in atomically thin carbon
films,” Science 306, 666 (2004).

4 A. Mistry, B. Moreton, B. Schuler, F. Mohn, G. Meyer,
L. Gross, A. Williams, P. Scott, G. Costantini, and
D. J. Fox, “The synthesis and stm/afm imaging of
‘olympicene’benzo [cd] pyrenes,” Chem. Eur. J. 21, 2011
(2015).

5 S. Wang, L. Talirz, C. A. Pignedoli, X. Feng, K. Müllen,
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tiz, M. Di-Giovannantonio, S.-G. J. Carlos, J. Fernández-
Rossier, C. A. Pignedoli, et al., “Large magnetic exchange
coupling in rhombus-shaped nanographenes with zigzag
periphery,” Nat. Chem. 13, 581 (2021).

8 J. Li, S. Sanz, J. Castro-Esteban, M. Vilas-Varela,
N. Friedrich, T. Frederiksen, D. Peña, and J. I. Pas-
cual, “Uncovering the triplet ground state of triangular
graphene nanoflakes engineered with atomic precision on
a metal surface,” Phys. Rev. Lett. 124, 177201 (2020).

9 S. Mishra, D. Beyer, K. Eimre, S. Kezilebieke, R. Berger,
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