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Abstract. We study theoretically electron interference in a Mach—Zehnder-like
geometry formed by four zigzag graphene nanoribbons (ZGNRs) arranged in
parallel pairs, one on top of the other, such that they form intersection angles
of 60°. Depending on the interribbon separation, each intersection can be tuned
to act either as an electron beam splitter or as a mirror, enabling tuneable
circuitry with interfering pathways. Based on the mean-field Hubbard model
and Green’s function techniques, we evaluate the electron transport properties
of such 8-terminal devices and identify pairs of terminals that are subject to
self-interference. We further show that the scattering matrix formalism in the
approximation of independent scattering at the four individual junctions provides
accurate results as compared with the Green’s function description, allowing for a
simple interpretation of the interference process between two dominant pathways.
This enables us to characterize the device sensitivity to phase shifts from an
external magnetic flux according to the Aharonov-Bohm effect as well as from
small geometric variations in the two path lengths. The proposed devices could
find applications as magnetic field sensors and as detectors of phase shifts induced
by local scatterers on the different segments, such as adsorbates, impurities or
defects. The setup could also be used to create and study quantum entanglement.

Keywords: Graphene nanoribbons, quantum transport, electron quantum optics,
interferometry, spintronics, mean-field Hubbard model, Green’s functions, scattering
matrix formalism

2302.04821v2 [cond-mat.mes-hall] 24 May 2023

arxXiv



Mach—Zehnder-like interferometry with graphene nanoribbon networks 2

1. Introduction

Over the past decade the field of electron quantum
optics, where electrons play the role of photons in
quantum-optics like experiments, has witnessed strong
theoretical and experimental advances. For instance,
several electronic analogues of optical setups have been
implemented, such as the Mach-Zehnder [I, 2] and
Fabry—Pérot [3, 4, 5] interferometers, as well as the
Hanbury Brown—Twiss [6, [7, [8, 0] geometry, enabling
studies of fermion antibunching and the two-particle
Aharonov-Bohm [I0] effect.

When it comes to electronic devices, graphene
is an advantageous material showing a high degree
of quantum coherence even at moderately high
temperatures [II]. The similarities between electrons
travelling ballistically in graphene constrictions and
photons propagating in waveguides have placed the
focus on this material for electron quantum optics
applications. For instance, the electron wave nature
has manifested in refraction effects in p-n junctions,
e.g., when transmitted across a boundary separating
regions of different doping levels [12] [13].

In particular, within the group of graphene
derivatives and nanostructures, graphene nanoribbons
(GNRs) offer attractive characteristics for electron
quantum optics. First, the confinement of electrons
to one dimension (1D) provides a versatile, width-
dependent electronic structure which can include the
appearance of a band gap and spin-polarized edge-
states as, e.g., in the case of GNRs of zigzag edge
topology (ZGNRs) [14, [I5]. Secondly, it has been
experimentally demonstrated that GNRs possess long
coherence lengths, that can reach values of the order of
~ 100 nm [I6] 17, [I8]. Furthermore, ballistic transport
in ZGNRs can be rather insensitive to edge defects
because the current flows maximally through the center
of the ribbon as a consequence of the dominating Dirac-
like physics [19].

With respect to their experimental realization and
feasibility, the emergence of bottom-up fabrication
techniques has resulted in the fabrication of long,
defect-free samples of GNRs via on-surface synthesis
20, 21, [22]. This approach has also opened
new possibilities to design m-magnetism in carbon
nanostructures and to address localized, unpaired
electron spins [23]. Additionally, GNRs can also be
picked up and manipulated with scanning tunneling
probes [24, 25, [26], suggesting the possibility of

building two-dimensional multi-terminal GNR-based
electronic circuits [27], 28] 29| 30} 31].

One of the most elementary building blocks neces-
sary to perform electron quantum optics experiments
is the electron beam splitter, the electronic analog of
a beam splitter for light, which coherently splits an
incoming particle into a superposition of two states
propagating in different output arms of the device.
Remarkably, it has been theoretically discovered that
one GNR placed on top of another with an intersec-
tion angle close to 60° enhances the electron transfer
process between the ribbons, an effect related to the
fact that the orientation of the honeycomb lattices of
the bottom and top ribbons are aligned [32] [33] [34].
In fact, valence- or conduction-band electrons injected
in such a four-terminal device are scattered into only
two of the four possible outgoing directions without
reflection. Depending on the width of the GNR, inter-
layer separation, and energy of the traversing electrons,
the branching ratio can be varied, resulting in differ-
ent behaviours such as mirrors, beam splitters (half-
transparent mirrors), and energy filters [34]. Further-
more, the magnetic instabilities that appear due to the
localization of the edge states in ZGNRs near the Fermi
level [35] [14] 6] make junctions of ZGNRs even more
interesting since they can spin-polarize the transmitted
electrons [37].

With these fundamental components one can
consider building a GNR-based Mach-Zehnder-like
interferometer, which can be used for a variety of
tasks from sensing of magnetic fluxes or local electric
fields to measuring indistinguishability [9], statistics
[38], and coherence length [39] of the charge carriers
or generating entanglement between them [40] 4T] [42].
Other two-path setups have been demonstrated to act
as a manipulable flying qubit architecture [43] using the
Aharonov-Bohm (AB) effect [44]. In graphene, the AB
effect has been studied in ring-shaped nanostructures
both theoretically [45, 46, 47, 48] and experimentally
[49], and more recently also considered in bipolar
hybrid monolayer-bilayer junctions [50]. It has also
been observed in a graphene quantum-Hall system for
spin- and valley-polarized edge states [51]. However,
these nanostructures are in general difficult to produce.
Moreover, when it comes to electron interference, clean
systems and long phase-coherence length are required.
Therefore, ZGNRs should provide an outstanding
platform for electron quantum optics.

Here we propose a setup to study these phenomena
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which seem not too far away with the current
experimental techniques. Our interferometer, shown
in figure a), is formed by four crossed ZGNRs in a
pairwise arrangement forming a parallelogram where
the intersecting angle between the ribbons is 60°. The
ZGNR width is here selected to be of 10 carbon atoms
(W = 10); this choice is not particularly critical as
qualitatively similar transport behavior is expected
for other ribbon widths [34]. We show that in the
single-channel energy window near the Fermi level,
electrons are transmitted essentially without reflection
at each intersection. This allows to describe the self-
interference process by considering each junction as
if they were independent scatterers for the incoming
electrons. Given the exclusive transmission into only
two out of the four terminals in each beam splitter,
the AB effect in the multiterminal setup does not
suffer from complicated multi-path interferences that
would lead to the loss of quantum information carried
by coherent electrons reaching the other reservoirs.
This enables us to characterize the interferometer as
a detector of phase shifts, e.g., induced by a transverse
magnetic field, electric fields or any geometrical
distortion or defect that changes the relative phase
between the two available paths that will interfere.

2. Methods

2.1. Model Hamiltonian

The system, shown in figure a), is divided into the
device (scattering) region that contains the enclosed
area by the crossing ribbons, and the eight semi-infinite
ZGNRs (periodic electrodes), represented as orange
rectangles. The total Hamiltonian is correspondingly
split into the different parts Hr = Hp + ZQ(HQ +
H,p), where Hp is the device Hamiltonian, H, the a-
electrode Hamiltonian, and H,p the coupling between
these two subsystems.

The effective Hamiltonian for the m-electrons, re-
sponsible for spin-polarization and transport phenom-
ena, can be described in terms of the mean-field Hub-
bard (MFH) model with a single p, orbital per site

123, 52], i.e.,
Hr = Zeicgacw + Ztijcjgcja + UZni,, (niz),(1)

0 17,0

t

where ¢, (c;) creates (annihilates) an electron on site ¢

with spin o = {1,]}, and n;, = c;r’acw is the number
operator. The Coulomb interaction is parametrized via
the onsite repulsion U, which in the following is fixed
to U = 3 eV. The qualitative picture is not altered
by its precise magnitude, only the quantitative results
(like the size of the induced band gap). Following
Ref. [34], the matrix element ¢;; between orbitals ¢
and j is described by Slater—Koster two-centre o- and

v w

Figure 1. Illustration of the general setup. (a) Top view of
the ZGNR interferometer. The eight terminals, labelled A-H,
are represented as orange rectangles. The colored edges show
the local spin polarization obtained as a solution to the MFH
model with open boundary conditions. The width of the ZGNRs
(W = 10) is defined as the number of carbon atoms across the
ribbon. d stands for the vertical separation between the top and
bottom ribbons while L1 2 is the distance between the center
of two junctions. (b) Representations of different low-energy
spin configurations (labelled 1 to 8) differentiated by the edge
polarization (red/blue for up/down spins) in each of the four
ZGNRs. The symbols (white and black circles, and light and
dark gray squares) represent the 4 different spin configurations
of the individual junctions (each symbol represents a pair of
different shadings that are related by spin inversion).
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m-type integrals between two p, atomic orbitals [53]
as used previously for twisted bilayer graphene [54]
and crossed GNRs [34, B7]. We further fix the on-
site energies ¢; = FEp equal to the Fermi energy
FEr. Given that ZGNRs develop a band gap for
U > 0 we define Er as the midgap value of the
electrodes. As the junctions between the ribbons break
translational invariance of the perfect ZGNRs, we use
the nonequilibrium Green’s functions (NEGF) [55 [56]
formalism to solve the Schrédinger equation for the
open quantum system. Details of the implemented
MFH model with open boundary conditions [52] can
be found in the supplemental material of Ref. [37].

Within the MFH approach, the self-consistent
solution of a periodic ZGNR can be obtained by
imposing one of the two possible symmetry-broken
spin configurations at the edges. This is, by fixing
the 1-spin majority at the lower edge of the ribbon
and the |-spin majority at the upper edge, or vice
versa. While the ground state has zero net magnetic
moment m, = 0 it displays antiferromagnetic order
between unpaired spins at the edges. For the
device structure shown in figure a) this implies in
principle 28/2 possible boundary conditions for the
polarization of the electrode regions. However, as
shown previously, solutions with magnetic domain
walls within the individual GNRs are energetically
unfavorable compared to solutions with unaltered edge
polarizations along the GNRs [37]. This reduces the
number of low-energy solutions to the 8 possibilities
schematically shown in figure b), with circles and
squares representing two different magnetic orderings
at a junction. As an example, the calculated spin
polarization for configuration 1 is superimposed on the
structure in figure a).

Each spin configuration for the total device
also defines the spin configuration of the individual
intersections between the ribbons. For this reason, to
show the different spin configurations we used different
symbols to represent them as a combination of four
different junctions. There are two types of junctions,
one that polarizes the outgoing beam, represented by
a circle, and one that gives a non-polarized outgoing
beam represented by a square, as shown in [37] and
here in section 3] The filling of the symbols (white and
black, and light and dark gray) represent that one is
the spin-inverted version of the other.

2.2. Peierls substitution method

To describe the system in the presence of a transverse
magnetic field (i.e., along the z direction) we use the
Peierls substitution method [57], where the gauge-
invariance of the Schrédinger equation requires to
transform the wave-function amplitude, or equivalently
the hopping matrix elements as t;; — t;;€'%, where

the phase shift

e (R
%j:ﬁ/a A -dr (2)

is the integral of the vector potential A along the
hopping path with Ry = (zk,yk, 2x) the coordinates
of the orbital located at site k.

Given the relation between the magnetic field and
the vector potential B = V x A, we have within the
Landau gauge A(r) = Box ¢, which leads to

o 7TB()
AT
where &g = h/(2e) is the flux quantum. We ignore the
effect of a magnetic field outside the device region, i.e.,
the Peierls phases are not included in the leads.

We note that, while the ground state of ZGNRs
display zero total magnetic moment m, = 0 (as
mentioned above), the presence of a magnetic field B
can stabilize a high-spin configuration |m,| > 0 due to
the Zeeman energy AE = gsupm,B, where gs ~ 2 is
the electron spin g-factor and p 5 is the Bohr magneton.
Within our model calculations for 10-ZGNRs (Slater—
Koster parametrization and U = 3 €V), such a high-
spin (excited-state) solution with ferromagnetic order
across the spins at the GNR edges is obtained for
m, = 0.27 per primitive cell. The corresponding
electronic energy is 5.7 meV/cell above the ground
state, implying that a critical magnetic field of the
order B, = 182 T is needed to make the two spin states
degenerate. In other words, as long as the magnetic
field is below this critical value we expect the magnetic
order of our device to be among those of figure a),
all corresponding to m, = 0.

(zj — ) - (Y5 + ¥i), (3)

2.8. FElectron transmission from Green’s functions

To perform transport calculations we use the Green’s
function approach. In particular, to obtain the
transmission probabilities for each spin component o =
{1, 4} between leads a and 8 (T75) we use the [58, [59]
for ballistic conductors,

75(E) = Tr [[SGT5GT] (4)

where the retarded device Green’s function is calcu-
lated as

() = (B0 -1y - Y mg] (5)

with 37 (E) being the retarded self-energy from «, and
re(E) =i(27 - 57 (6)
is the broadening matrix due to the coupling of the
device region to lead a.

The reflection probability can be conveniently

written as a difference between the total number of
open channels/modes available at that precise energy
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M¢ and the scattered transmission into all the 5 # o
electrodes, i.e.,

R(E) = M7 = > 17 (7)
B
Computationally, we calculate the transmission

probabilities from the Green’s function using the open-
source software TBtrans v4.1.5 [60].

2.4. Scattering matriz formalism

In order to analyze how electron transport is affected
by scattering at each junction region we make use of
the scattering matrix (S-matrix) approach, which can
be easily computed from the retarded Green’s function
of the device for a given energy F by means of the
generalized Fisher-Lee relations [61], [60]:

os(E ):—6aﬁ]1+ZI‘”TGUI‘B , (8)
where

I7(E) = diag{,/75} U7, (9)
is related to the level broadening matrix I'?, by
I’ (E) = U diag{»}U] =TT .
Here U? is the unitary matrix whose rows are
the normalized eigenvectors of I'?, which physically
map into the transverse modes of the electrode that
are coupled to the device by a strength given by
the eigenvalues {7v2}.  This enables a numerical
simplification since one can discard the modes that
are actually decoupled from the device, i.e., neglecting
those vectors of U7 associated to vJ =~ 0 We note
here that the S-matrix in (8)) for N-terminal devices is
unitary as it can readily be verlﬁed that >, S91,S9, =
0ap 1.

For a # B (a = ) S7 4 represents the transmis-
sion (reflection) amplitude matrix. The corresponding
transmission probability can be computed as

75(B) = Tr [S70824] (11)

where the trace runs over the transverse modes,
recovering the Landauer-Biittiker conductance formula
[58, £9] written in ().

In the following we focus on the equilibrium
situation where all leads have the same chemical
potential (o = Ep = 0) and the temperature of the
system is always T" = 0. We modelled the Hamiltonians
and obtained the self-energies X9 using recursion [62]
as implemented in the open source, python-based
SISL package [60L [63], while the scattering matrices
are obtained using our own custom scripts. For
benchmarking our transport calculations based on the
scattering-matrix formalism we also used the Green’s
function method for the whole device as explained in

section 2.3

(10)

3. Results

3.1. Independent-scatterers approximation

The overall scattering matrix of the full device
can be obtained by combining each junction’s S-
matrix coherently using the Feynman paths [64] to
simulate the electronic path through the 8-terminal
interferometer. However, we know from previous
results [34] [37] that electrons injected in ZGNR
intersections are transmitted without reflection in the
single-band energy region. Under these circumstances
the problem becomes significantly easier, and can
be addressed by combining the S-matrices of each
junction by using simple matrix multiplications, as the
interference terms between the incoming and reflected
beams are suppressed, leading to a computationally
easier approach as compared to the full NEGF
inversion.

In figure [Ja) we sketch the eight-terminal
interferometer as a composition of four independent
scatterers represented by s, (lower-case), with s €
{w,x,y,z}, the S-matrix corresponding to each
4-terminal junction between two ZGNRs.  Each
junction w, X,y, z can, in principle, have different spin
configurations, as shown in figure (b) In figure b,c)
we show the transmission probabilities for a single
crossing with spin configuration indicated with a circle
in figure [1{b) for spin o =7, |, respectively. Similarly,
in figure d,e) we show these results for a crossing with
spin configuration sketched with a square in figure b).
Here we can observe that, on the one hand, there is no
transmission into port 4 in any of the crossings (green
curves) and no reflection (gray curves) in the single
channel energy region (shaded area). On the other
hand, by looking at figure b—e) we can see that 17,
and TY; are spin-dependent quantities (spin-polarizing
beam splitter) for the crossing with spin configuration
represented by a circle, while in the case of the crossing
with spin configuration represented by a square, these
transmission probabilities are spin independent (non-
polarizing junction). For instance, by comparing
figure b) and (¢) it can be seen that T(Iﬁ(E) ~

Tiﬂ( E) for |E| < 1.1 eV. For this system, we find
that the polarizing crossing displays a maximum spin
polarization in the transmission probability (within
the single-channel energy region) of around |Tgﬂ —

Ti5| ~ 0.45 close to E ~ 0.5 eV, for « = 1 and
B = 2,3. Similar results were found for a crossing
of slightly narrower GNRs (8-ZGNRs) in Rref. [37].
Note that here we compare two methods to obtain
the transmission probabilities, the scattering matrix
formalism (open circles) and the NEGF method as
implemented in TBtrans [60] (solid lines), which give
essentially the same result.
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Figure 2. (a) Sketch of the electronic circuit composed of
four independent scatterers that conform the interferometer.
Matrices w, X, y, z correspond to the S-matrix of the independent
4-terminal junction of two ZGNRs, as shown in the inset figure.
Each junction can have in principle different scattering matrices,
according to ﬁgure The electrons are injected from terminal
A (source). ® denotes the magnetic flux that is created by the
area enclosed within the interferometer. (b)-(c) Transmission
(Tgg) (vertically offset) and reflection RZ for ¢ =1 and o =,
respectively, for terminals « = 1 and 8 = 2,3,4 for a single
GNR crossing with the spin configuration represented by a
circle in figure b). (d)-(e) Same as panels b and ¢ but for
a single crossing with the spin configuration represented by a
square in ﬁgureb). The transmission functions were calculated
with TBtrans [60] (solid lines) and with the scattering matrix
formalism (open circles). The single-channel energy region is
shaded in light gray.

The S-matrix of the complete interferometer, S7
(uppercase), can then be written in terms of s7,, with
appropriate connection of in- and outgoing electrode
indices (u,v € {1,2,3,4}). For electrons injected in

the device from terminal A, one has:

SiB = W4, (12a)
SAc = WioX{y, (12b)
SAp = WisX7o, (12¢)

12d)
12¢)

o S o o o o o o
SAE = WIaX{3Yis + Wi3Z15Y o,

(o — (o8 (o8 (o (o8 (o (o8
SAr = W1aX{3Yi3 + Wi3Z12Y 73,

(
(

Sic = Wi3273, 12f)
Sin = Wi327; . (129)

To test our approximation, we compare in fig-
ure a) the transmission probabilities obtained with
TBtrans [60] (solid lines) for the whole interferometer,
with those obtained with the independent-scatterers
approximation (open circles) using —). As
shown in this panel, within the single-mode energy re-
gion (shaded areas), the approximation of independent
scatterers yields a perfect overlap with the full solution.
This is due to the lack of reflection and/or interband
scattering in the ZGNRs junctions for electrons in the
single-mode energy region, as shown in figure (b—e).
In fact, for larger energies, the approximate (open cir-
cles) and full solution (solid lines) start to deviate, since
here one should also take into account the contribution
of the reflected beams between independent scatterers
to coherently combine the scattering matrices of the
junctions. For completeness, we performed the same
analysis shown in figure [3| for electrons with the op-
posite spin ¢ =/, in figure @] It can be seen that the
same observations listed above hold for the other spin
component.

3.2. Deviations from standard Mach-Zehnder setup

We note that in the ideal MZI interferometer two of the
junctions should act as 50:50 electron beam splitters
while the other two should act as perfect mirrors
(where the outgoing electrons are transmitted with
zero probability through those output ports). In other
words, the only non-zero transmission probabilities
should be TSy and Ty with T, + T =~ 1 (at the
single-mode energy range). While in figure[3|(a) we can
observe that T, # 0 and T'{ # 0, one could achieve
the ideal MZI interferometer by forcing junctions x and
z (considering an electron incoming from terminal A)
to work as mirrors instead of beam splitters. One
way to change the inter-/intra-ribbon transmission
ratio (quantity that controls the performance of the
junction) is by modifying the distance between the
on-top and bottom ribbons (see figure for such
junctions. For instance, if the vertical distance between
the ribbons is reduced, the transmission between them
can be enhanced up to values close to 100% (condition
for a perfect mirror where the electron beam is fully
transferred between the ribbons) [34].

In figure[3|(b) we calculated the transmission prob-
abilities using our independent-scatterers approxima-

tion with (12d)-(12¢g), where the scattering matrices

xy,, and zj,, here correspond to a junction between two

10-ZGNRs with a relative distance that is ~ 4.5% re-
duced with respect to the junctions w and y (d = 3.19
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a Identical junctions

b Two compressed junctions C

With magnetic field

7.01

6.0 1

5.0 1

=~
o

Transmission

&2
o
!

2.0

1.01

0.0+

00 1.0 20

E — EF [CV]

0.0
E _

00 1.0
E— EF [CV]

1.0 20

E F [CV]

Figure 3. Transmission probabilities between the pairs of terminals of an 8-terminals interferometer built with 10-ZGNR and spin
configuration 1 (see figure [I)), with spin o =1 obtained for the complete system with TBtrans [60] (full lines) as well as with the
independent-scatterers approximation (open circles). (a) Four identical junctions (interribbon distance d = 3.34 A). (b) Junctions x
and z have a reduced interribbon distance d = 3.19 A relative to the junctions w and y (d = 3.34 A). (c) Four identical junctions
(d =334 A) in presence of a transversal magnetic flux ® = ®y within the interferometer. In all panels shaded areas indicate the
(single subband) energy regions where there is only one available transmission channel. The curves are vertically offset by integer

values. The horizontal dashed lines indicate Ti 8= 0.

A versus d = 3.34 A) All junctions have the same spin
configuration. In this figure we can observe that there
is an energy range (for E € (—0.5,—0.7) U (0.5,0.7),
approximately) where all Tj‘ 5 ~ 0 except for Tjt p and
T, (ideal MZI).

Note that even in this scenario where the geometry
of the interferometer has been distorted, the reflection
probability still remains close to zero in the single-mode
energy region (gray curves in figure [3[b)).

3.8. Magnetic-field dependence of scattering matrices

In presence of a magnetic field perpendicular to the
interferometer plane (parallel to the z-axis in this case),
as the crossed ZGNRs enclose an area, there will be a
magnetic flux encompassed by the ribbons (represented
by & in figure . Under these circumstances,
the transmission probabilities between certain pairs
of incoming/outgoing ports will be affected by the
presence of the magnetic flux, as the electron injected

can acquire a phase (Agp) by following certain paths
that surround a region with non-zero vector potential
A enclosed by the interferometer,

™ P
A :—][A-dl:ﬂ—.
4 @0 Jo Dq

Here & = ByA is the flux of an external magnetic
field By through the area A enclosed by the contour
C = C1 + Oy (see figure ). Because the global
phase is arbitrary we can split the phase difference into
contributions +A¢g/2 for the two pathways.

From — we observe that electrons
incoming from terminal A only display interference
for the pathways into terminals E and F, since
here the S-matrices are built from a sum of two
paths, as sketched in figure 2l  To compute the
transmission probabilities using the independent-
scattering approximation, including the the additional
phase contribution due to the presence of the magnetic
field, we use the modified equations

(13)

iAp/2
)

o __ o L0 O —iAp/2 o o O
SAE = Wi9X{3y 1€ / + Wi3Z42Y12€ (14a)
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Figure 4. Same analysis as shown in figure [3| but for electrons with spin o =J.
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The corresponding transmission probabilities between
these terminals show a periodic dependency on the
magnetic flux as a result of the interference term
between the two possible paths.

We only show calculations for the spin configura-
tion 1 because the self-interference patterns are very
similar for all spin configurations shown in figure b).
We note, however, that the spin polarization of the
outgoing electron beam will depend on the chosen spin
configuration. For instance, the spin-polarizing effect
is absent for configuration 4 in the case where the ge-
ometry is perfectly symmetrical. Nevertheless, it is
worth mentioning that away from the crossing angle
of 60° (likely situation when building this geometry
experimentally), each four-terminal junction generally
polarizes the outgoing beam independently from the
spin configuration [37].

To test how our approximation works with the
magnetic field, we compare in figure c) the trans-
mission probabilities obtained with TBtrans [60] (solid
lines) for the whole interferometer, with those obtained
with the independent-scatterers approximation (open
circles) when ® = @, for a device with equal junc-
tions, where d = 3.4 A. We choose such magnetic flux

since it leads to a phase difference of Ay = 7, and thus
to a complete extinction in one arm. The solid lines
plotted in this panel were computed using the Peierls
substitution (explained in section [2)) with a magnetic
field of By = ®y/A = 29.6 T for the device of figure
of area A = 8.85 x 9.10 x sin(7/3) nm?.

As shown in figure [3] in the single-mode
energy region (shaded areas), the approximation of
independent scatterers (open circles) also yields a
perfect overlap with the full solution (solid lines) in
presence of a transverse magnetic field.

Another important result seen in figure [3] is that
the reflection probability Rsz is zero in the single-mode
energy region both in presence or absence of a magnetic
flux. Moreover, we also observe, as predicted, that
the transmission probabilities that do not involve two
possible paths (i.e., S% 5, S%c, Sip, S%q, S%y) are
insensitive to the magnetic field since the only curves
that are affected by ® # 0 are 77, and T3 5.

3.4. Self-interference pattern with magnetic field

In figure [§] we show the interference patterns per
spin channel of an interferometer by computing the
transmission probability as a function of the incoming
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electron energy only in the single-mode energy window
and for a magnetic flux ®/®, € [-2,2]. Only
the single-band energy region is shown for which
the independent-scatterers approximation provides
accurate results. We plot the difference 79, — T for
o =1,/ in figure[§(a,b) and its average in figure [5|(c).
In figure d) we plot the difference between the
derivatives of the transmission probabilities T 45 and
T 4 with respect to the magnetic flux. In this panel we
can identify the regions of high sensitivity of the device.
In figure [5fe) we plot the sum of the transmission
probabilities T3 + 17, for 0 = 1,] and its average
per spin channel. While figure (a—e) correspond to
a device formed of four equal junctions, figure (f—
j) show a similar analysis for the ideal MZI where
junctions x and z are compressed (d = 3.19 A) to
provide effective mirrors. The figure clearly reveals
the AB effect for electrons after self-interfering in the
outgoing terminals. We also see that the transmission
probability is highly dependent on the electron energy
and magnetic flux. These transmission probabilities
also display a slight dependency on the spin index
of the electrons, as the junctions in configuration
1 polarize the outgoing electron beam [37]. By
comparing figure (a—e) to figure f—j) we observe that
the device with compressed junctions acts as an ideal
MZI where the electron beam is transmitted only into
ports E and F without losses, as the corresponding
transmission probabilities in this case reach values close
to 100%, while in the case of four equal junctions
T9 5 and TG reach maximum values of ~ 50%. Note
that the sum of the transmission probabilities shown
in figure e,j) is constant with respect to the magnetic
flux, since the magnetic field only modifies the relative
phase acquired by an electron between the two paths
that interfere, but this phase does not change the
transmission probabilities between electrode A and
electrodes B, C, D, G, and H. Since the current must
be conserved, while 77, and 19, are individually
affected by the presence of the magnetic field, the sum
of them must remain constant. As shown in figure[3{c),
the complete extinction of the transmission into one
arm is independent of the transmission ratio between
the ZGNRs of junctions w and y (as long as they
are identical), while the contrast of the signal shown
in figure |5| is highly dependent on this ratio (and is
optimal for 50:50 beam splitters).

For completeness, in figure [6] we show the degree
of transport spin polarization for the 8 possible spin
configurations of figure [[{b), defined as

Pog=T1,— Ty (15)
We observe that the device’s spin configuration is not
particularly relevant for the interference pattern, as the
interference is determined by a periodic dependency on

the magnetic flux. However, the spin configuration is

important for controlling the spin polarization of the
outgoing electron beam. Interestingly, we observe that
the spin polarization not only varies with the electron
energy, but can actually be tuned with the magnetic
field. But we also see that there are certain spin
configurations that do not give a polarized outgoing
beam (such as configurations 4 and 6). In the case
of configuration 4, it is easy to understand that
the outgoing beam is not spin polarized as the four
junctions in this case are non-polarizing [37]. In the
case of configuration 6, while there are two spin-
polarizing junctions (x and z), the one in the outgoing
junction y is the spin-inverted version of the one in
the incoming junction w. The multiplication of the
corresponding scattering matrices results in a non-
polarized outgoing beam.

3.5. Other applications

The MZI can be used to detect differential phase shifts
between the two arms of the MZI, that could be caused,
e.g., by defects, potentials in one of the four arms, path
length, or by the charging state of nearby defects.

The functioning of the MZI depends crucially on
the phase coherence of the electronic wave functions
traveling along the two paths. Thus, it is natural
that the MZI can also be used to detect decoherence
and measure, e.g., the electron’s coherence length and
how it is influenced by parameters such as temperature
[65] 41, [39]. Furthermore, the MZI can be used to learn
about properties of the carriers producing the signal,
e.g., to measure the degree of indistinguishability of
electrons [8, [9], or the statistics of the charge carriers
in the device [38].

There are also several applications related to
quantum information processing. The MZI can be used
to implement single-qubit rotations (on charge qubits,
or with spin-dependent phases induced, e.g., by spin-
orbit interaction also for spin qubits), or to perform
entangling operations such as parity measurements [66]
or probabilistic entanglement generation [40].

Since the consideration of electron-electron inter-
action, spin-orbit interaction and decoherence is be-
yond the scope of this article, we will illustrate the use
of the proposed GNR-MZI for phase detection.

As an example, here we consider the case of a
geometrical distortion where the length of one of the
paths (C2) is longer than the other (C) that could
be caused, e.g., by the presence of a fold in one
of the ribbons composing it or a corrugation in the
substrate underneath. To simulate the presence of
such geometrical distortion we include a section of a
perfect ribbon between two ports to simulate the extra
distance between the two paths. We do not consider
any modified hopping or on-site energy terms in the
Hamiltonian, as a first approximation.
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Figure 7. Sensor of geometrical distortions. (a) Phase shift
per length as a function of electron energy calculated only
for the single-mode energy range where a = 2.46 A is the
graphene lattice constant (size of the ZGNR unit cell along
the periodic direction). (b) Difference and (c) sum of the
average transmission probability per spin channel between ports
A and E, F of a 10-ZGNR interferometer as a function of the
relative difference in length between C; and Cg, calculated
with the independent-scatterers approximation. We consider the
interferometer in spin configuration 1.

Electrons propagating through the perfect ribbon
section are transmitted with 100% probability. How-
ever, they acquire a phase that depends on the size of
such section, which can be determined by computing
the complex part of the transmission amplitude (scat-
tering matrix) of this system. In the single-mode en-
ergy region this phase is easily determined since the
scattering matrix of this section is of size (1 x 1). For
this reason we can compute the overall scattering ma-
trix of the interferometer by using the modified

and :

o __ o L0 0 ,—ixAx o o .0
SAE = Wi9X{3Y i€ + W13Z45Y 12, (16a)
Qo 0 O O —ixAx o 0 O
SAr = W{pX{3yise + W13Z42Y13, (160)

where, x is the electronic phase shift per length unit
of a perfect 10-ZGNR section, and Ax represents the
relative length difference between C; and C5. For this
example we assume a longer distance between ports
w and x, making the Cy path Ax A longer than Cj.
Although other S-matrix elements of (12d)-(124) are
modified as well by the presence of such geometrical
distortions (as, e.g., (128) and considering that
the section of a perfect 10-ZGNR is situated between
junctions w and x), the transmission probabilities
associated to those matrices are not affected since a
global phase does not change these values. However, in
the case of —, the presence of the 10-ZGNR
section adds a relative phase between the two paths
which affects the overall transmission probabilities
associated to those S-matrices.

In figure [7fa) we plot the phase-shift per unit
length acquired by an electron passing through a
section of a perfect 10-ZGNR within the single-mode
energy window. In figure [7[(b,c) we plot difference
and sum, respectively, of the average transmission
probabilities T 4x and T 4 as a function of the relative
length difference between Cy and Cy (Az), and the
electron energy (only shown the single-mode energy
range) in absence of an external magnetic field. Here
it is easy to see that the interference pattern will also
depend on these kind of geometrical distortions that
affect the relative phase acquired by an electron after
travelling through paths C; and Cs.

4. Conclusions

In this work we have studied the performance of a
device formed of four crossed ZGNRs as an electron and
spin interferometer. As ZGNRs host spin-polarized
states due to the presence of electron interactions, we
use the mean-field Hubbard Hamiltonian to describe
the spin physics in this device by including the
Coulomb repulsion term. To solve the Schrédinger
equation in each iteration step we use the NEGF
formalism for this open quantum system. Since the
junctions create spin-polarizing scattering potentials
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[37], the resulting transmitted electrons in the different
outgoing directions are spin polarized as well.

Furthermore, since electrons are transmitted
without reflection, we can consider the system as
an array of independent scatterers by using the S-
matrix of each 4-terminal junction and combining
them correspondingly to compute the overall S-matrix
for the full device. The agreement between this
approximation and the full solution is practically
exact in the single-channel energy region, where the
backscattering and transmission into the other output
are zero.

Since some of the output ports can be reached fol-
lowing two possible paths, the transmission probability
into these depends on the self-interference of the propa-
gating electron. Moreover, the self-interference pattern
can be further tuned by applying an external uniform
magnetic field as a consequence of the Aharonov—Bohm
effect. Interestingly, the self-interference pattern will
depend not only on the electron energy and magnetic
flux, but also on the spin index of the transmitted elec-
trons. To further analyze this effect, we also calculated
the spin polarization in the transmission probability of
the two outgoing directions of interest, as a function
of the electron energy and magnetic flux. While in
the case of the interference pattern, the spin configu-
ration is not particularly relevant, as the interference
is dominantly determined by the cosine dependency
of the magnetic flux, the spin configuration will de-
termine the spin polarization of the outgoing electron
beam in the possible outgoing ports. For instance, de-
pending on the combination of the spin configurations
of the junctions, the resulting outgoing beam will be
polarized or non-polarized. Remarkably, the spin po-
larization not only varies with the electron energy, it
can also be tuned by the existing magnetic flux.

Since the invention and further development of
the single-electron source [67], performing electron-
quantum-optics experiments at the single-particle level
is now possible, where both emission and detection
achieve efficiencies that reach values even larger
than photon-based sources [68]. While the major
obstacle for quantum implementations with single
flying electrons is decoherence, here we propose a
graphene-based interferometer in which spin-orbit and
hyperfine interaction—the two major intrinsic sources
of spin relaxation and decoherence in GaAs devices—
are expected to be small due to carbon’s low atomic
mass and low abundance of spinful nuclei. In fact,
realizing a MZI in GNR-based nanostructures would
set the stage for electron quantum optics experiments
in this platform and provide evidence for its viability
as a basis for quantum computing.
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