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Poly(indenoindenes) are π-conjugated ladder carbon polymers with alternating hexagons and
pentagons hosting one unpaired electron for each five-membered ring in the open-shell limit. Here
we study the main magnetic interactions that are present in finite oligo(indenoindenes) (OInIn),
classifying the six possible isomers in two different classes of three isomers each. One class can
be rationalized by frustrated S = 1/2 Heisenberg chains, with ferromagnetic interactions between
neighbour sites and antiferromagnetic interactions between the next neighbours. The other class
is characterized by the more trivial antiferromagnetic order. Employing several levels of theory
we further show that the ground state of one of the isomers is a valence-bond solid (VBS) of
ferromagnetic dimers (S = 1). This is topologically similar to that of the Affleck-Kennedy-Lieb-
Tasaki (AKLT) model, which is known to show fractional S = 1/2 states at the edges.

The study of graphene-related systems as playground
for realizing exotic phases of matter is a topic of intense
research in modern physics. The observation of supercon-
ductivity in magic-angle twisted bilayer graphene1, or the
discovery of fractional edge states in triangulene chains2,
would be fair examples of such claim. Thus, as a general-
ization of the latter, open-shell nanographenes that host
localized electrons can be used to design more complex
architectures that mimic model and spin Hamiltonians,
displaying the non-trivial physics of these models2–12.

Inconveniently, the high reactivity inherent to un-
paired electrons has prevented the realization of these
systems for many decades. Solely recent experiments em-
ploying on-surface synthesis in ultra-high vacuum con-
ditions has shown effective for obtaining such pristine
open-shell molecules13–16. Further characterization, by
means of scanning tunneling microscopy (STM), has also
probed the existence of local moments by measuring
Kondo peaks17–19 or inelastic steps20–22. To this day,
this is a well-established technology, so there is a whole
plethora of platforms with localized electrons and π-
magnetism23,24.

Electron localization in nanographenes is related
very often with states pinned at (or close to) the
Fermi energy25, which are originated by several sources
like sublattice imbalance26 or non-trivial topology27,28.
These zero modes can interact by different exchange
mechanisms29,30, leading to either ferromagnetism or an-
tiferromagnetism. The total spin quantum number of the
ground state at half-filling can be predicted by the Lieb’s
theorem31 (S = |NA − NB |/2). This theorem was orig-
inally formulated for bipartite lattices (with NA,B sites
belonging to the sublattices A and B) and the Hubbard
model, and later found to be in agreement with numerical
results beyond this method32.

In the following we will primarily focus on non-
bipartite systems, more specifically, finite conjugated
ladder polymers that alternate hexagon and pentagon
rings: the oligo(indenoindenes) (OInIn, Fig. 1). The in-
clusion of P pentagon rings induces frustration in the
sublattices33, making Lieb’s theorem no longer applica-

ble, but one may expect exchange interactions to work
similar as in bipartite lattices. For instance, two overlap-
ping electrons present ferromagnetic (FM) exchange29,30

(JFM ∝ U), whilst coupling through hopping leads to
kinetic antiferromagnetic (AF) exchange30,34,35 (JAF ∝
1/U). It is worth to mention that there might be other
interactions that can be important, i.e., Coulomb-driven
exchange29,30, but the former two will play a dominant
role in the systems discussed here.
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FIG. 1: Isomeric forms of the OInIn in the open-shell con-
figuration. These systems would derive from the following
molecules: isomers 1 and 3 from indeno[1,2-a]fluorene, iso-
mer 2 from indeno[2,1-b]fluorene, isomer 4 from indeno[1,2-
b]fluorene, isomer 5 from indeno[2,1-a]fluorene and isomer 6
from indeno[1,2-c]fluorene. Any other isomeric system is just
a combination of these. According to our analysis, the struc-
tures can be grouped into classes I and II according to differ-
ent magnetic interactions.

In Fig. 1, we show the six possible isomers that can
be drawn by keeping invariant the angle of two vectors
that point in the vertex direction of adjacent pentagons.
Despite their high instability, experiments on several of
these systems have been reported to this day, like the an-
tiaromatic P = 2 island36 and oligomers37 of isomer 4. In
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that case, it is expected by theory38,39, and confirmed by
atomic force microscopy (AFM) experiments36, that the
shortest island is closed-shell, but the ground state de-
velops magnetism when the system is enlarged according
to calculations37,40,41. The synthesis of a C3 symmetric
derivative (truxene-5,10,15-triyl) with S = 3/2 ground
state is also confirmed42,43, as well as polymers of P = 2
islands44 of isomer 2, and polymers of P = 2 islands of
isomer 4 with intercalations45 of isomer 5.

Drawing the maximum number of Clar sextets in
OInIn leaves one unpaired electron per pentagon46, justi-
fying their radical character. According to this, we argue
that such indenofluorene derivatives, with P pentagons
and P +1 hexagons, may be understood as effective elec-
tron chains of size P . This picture corresponds to the
open-shell limit, and it is convenient for our purpose in
this article, although a more realistic description would
consist of a combination of different configurations that
reduces the radical character47. This is of especial rele-
vance for some P = 2 islands that are closed-shell38,39,
but simplifying the system to electron chains allows us to
study the exchange mechanisms at a fundamental level,
which also explains the physics of the shortest molecules.

Thus, in this work two things are done. First, we con-
sider that the OInIn can be interpreted, in the tight-
binding approximation, as bipartite systems plus a hop-
ping t′ that closes the pentagons48. Then, when inter-
actions are considered, we show that isomer 1 presents
a ground state in the vicinity of t′ = t that consists in
P/2 FM dimers with effective S = 1 quantum number
each (Fig. 2a). Second, in order to explain these re-
sults, we perform an analysis of the different magnetic
exchanges that may be present in the molecule. By this,
we manage to classify the six isomers in two different
groups: antiferromagnets (isomers 4, 5 and 6) and frus-
trated chains with antiferromagnetic second neighbours
interactions (isomers 1, 2 and 3).

Methods. In order to obtain our results, we con-
sider electron interactions by means of the Hubbard
model, that we solve using two approaches: a collinear
mean-field (MF) approximation and an exact diago-
nalization with a complete active space CAS(Ne, No),
where Ne (No) refers to the number of electrons (single-
particle orbitals) included. Then, we compare the
results of isomer 1 with those from density func-
tional theory (DFT), where we employed the Quan-
tum Espresso49–51 and ORCA52 packages with the PBE-
GGA53 and PBE054,55 exchange-correlation functionals,
respectively (see supp. mat.).

Results. The origin of magnetism in the OInIn lies
in the unpaired electrons, that are mainly localized at
the pentagons. These can be visualized in a simple non-
interacting tight-binding approximation, where P single-
particle states are present inside a big gap in isomer
1 (Fig. 2b). As we can see, such in-gap states can
be understood as the hybridized zero modes of the bi-
partite molecule with t′ = 0 and sublattice imbalance
|NA − NB | = P . Apparently, this hybridization is not

enough to prevent magnetism, and local moments ap-
pear in a MF-Hubbard model calculation for a P = 8
molecule when U > 0.8|t| (Fig. 2c). Counter-intuitively,
these pentagon moments do not display either ferromag-
netism or antiferromagnetism, but instead they organize
as FM dimers with AF order, distributed all over the
chain (Fig. 2a). The stability of these dimers can be
tested by modulating t′, where they are the ground state
in isomer 1 when 0.75 < t′/t < 1.15, showing that a
certain range of hybridization is key for their existence
(Fig. 2d).

In Fig. 2c, we show the energy difference between some
magnetic solutions of an isomer 1 P = 8 molecule and
the ↑↓↓↑↑↓↓↑ configuration as a function of the on-site
Coulomb repulsion U . After the system turns magnetic,
the dimers dominate with a maximum energy difference
of 46 meV for U ≈ 1.8|t|. This representation reveals
the stabilization inherent to the formation of the dimers,
since a solution ↑↓↑↑↓↓↑↓ with just two dimers is higher
in energy and ↑↓↑↓↑↓↑↓ could not be converged. If we
keep increasing U , the dimers stability is compromised,
so they are the ground state for 0.8|t| < U < 2.3|t|, which
lies in the range that is usually taken to be physically
relevant for nanographenes56. Additionally, we compute
the FM phase with S = P/2, which is a higher energy
solution until U ≈ 3.5|t| (not shown) that becomes the
ground state.

In addition, we also performed DFT calculations for
isomer 1 with different lengths and density functionals
(see Table I). In all cases, the FM dimers were the most
stable solution. Nonetheless, with the PBE-GGA func-
tional, for the P = 4 molecule the difference with ↑↓↓↑
is just of 2.2 meV, and 2.1 meV with the closed-shell
solution, which may shed doubts about a spin-polarized
configuration as the lowest energy state. However, for
either larger polymers, or with the hybrid PBE0 func-
tional, this energy separation increased, which validates
the FM dimers as the ground state, as we obtained with
the MF-Hubbard model.

We want to point out one further remarkable feature
of these polymers. In Fig. 2e we represent the absolute
value of the magnetic moment at each pentagon vertex
n for a large isomer 1 molecule with P = 64, calculated
with the MF-Hubbard model for U = 0.85|t|. With pe-
riodic boundary conditions (PBC), positive and negative
moments of equal magnitude alternate every two pen-
tagons. When the edges are present, we can see that,
whilst they keep the same dimeric pattern, the magnetic
moments get strongly localized at the termini, suggesting
non-trivial topology.

In order to understand the physics behind this mag-
netic behaviour, it is useful to consider these systems as
just bipartite lattices composed of hexagons, linked by an
extra carbon atom, plus an additional hopping that com-
pletes the ladder backbone48. Then, for P = 1 and t′ = 0,
we have a nanographene that consists of two hexagons
with one carbon that serves as linker. Such molecule
displays sublattice imbalance and one zero mode mainly
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FIG. 2: Magnetic results obtained with MF-Hubbard model for isomer 1. a) Magnetic moments mi per carbon site i of the
lowest energy solution calculated for U = 1.5|t|, isomer 1 with P = 16 pentagons. Color stands for the sign and the area for the
relative magnitude of the moment. Double bonds and H atoms are removed for clarity. b) Single-particle spectra around the
Fermi energy with t′ = 0 and t′ = t for isomer 1 with P = 8, calculated with the tight-binding model (t = −2.7 eV). c) Energy
difference for different magnetic solutions (labeled as σ1σ2...σP , where σn is the sign of the moment at the nth pentagon vertex)
and a solution with, apparently, FM dimers throughout the molecule except the edges (↑↓↓↑↑↓↓↑, hereafter broken dimers),
converged with MF-Hubbard as a function of U for isomer 1 with P = 8. CS stands for closed-shell. d) Energy difference for
the ↑↑↓↓↑↑↓↓ (FM dimers) and ↑↑↑↑↑↑↑↑ (FM) solutions and the broken dimers as a function of t′ for isomer 1 with P = 8,
calculated with MF-Hubbard model and U = 2|t|. e) Plots of the absolute values of the magnetic moments at each pentagon
vertex atom n of the lowest energy solution (FM dimers) for isomer 1 with U = 0.85|t| and P = 64, considering both periodic
(PBC) and open (OBC) boundary conditions. The red/blue colors stand for the sign of each moment. The formation of local
magnetic edge moments in the OBC case is clearly seen.

localized at the carbon atom that links the hexagons
(Fig. 3a). All the isomers are formed depending on the
position and the rotation of the bond that connects to
the next linker. For instance, the molecule at the inset of
Fig. 3b corresponds to isomer 1 with P = 2 and t′ = 0.

In this case, the second linker adds an extra atom to the
majority sublattice, and therefore |NA−NB | = 2. Inter-
estingly, the wave functions of the degenerate zero modes
can be chosen to be localized in a similar way as that of
the previous P = 1 molecule.
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FIG. 3: Analysis of the different magnetic exchanges present
in OInIn. a) and b) are the non-interacting tight-binding
spectra of two OInIn with P = 1 and P = 2, both with t′ = 0.
The absence of pentagons allows the bipartite classification of
the lattice, and the sublattice imbalance of each molecule en-
tails the presence of zero modes. The insets at each panel
stand for the probability distribution of these zero modes. c)
Sketch of the zero modes distribution of t′ = 0 molecules on a
lattice of isomer 1. There are two ways these zero modes cou-
ple considering just first-neighbours hopping, which leads to
a FM first-neighbours interaction and first/second-neighbours
AF exchange when t′ 6= 0. d) Effective spin-1/2 model that
the isomers from class I can be mapped to according to this
analysis.

As a consequence, an isomer 1 polymer with P pen-
tagons and t′ = 0 presents P zero modes, localized each
one of them at one linker and, to a lesser degree, at the
adjacent hexagons. This is schematically represented in
Fig. 3c, from which we can infer three main magnetic in-
teractions when t′ is included in the picture. First, two
first-neighbouring unpaired electrons share one hexagon,
where their wave functions overlap, leading to a FM
Hund’s interaction30 that scales with U . Second, t′ hop-
ping promotes a kinetic Anderson AF exchange30, pro-
portional to 1/U , that happens between first- and second-

neighbours. Summarizing: isomer 1 presents competing
AF and FM first-neighbours interactions and AF second-
neighbours interaction between the unpaired electrons.

PBE-GGA

∆E (meV) P = 4 P = 6 P = 8 1D

Broken Dimers 2.2 38.5 18.4 -

Closed-Shell 2.1 118.6 41.1 28.6

FM (S = P/2) 654.4 854.9 1316.5 741.8

PBE0

∆E (meV) P = 4 P = 6 P = 8 1D

Broken Dimers 93.6 118.2 133.9 -

Closed-Shell 504.7 1153.2 1084.5 -

FM (S = P/2) 293.1 511.1 741.1 -

TABLE I: Energy differences ∆E for the different magnetic
solutions of isomer 1, relative to that of the FM dimers, calcu-
lated with DFT for three molecular lengths and two different
density functionals (PBE-GGA and PBE0), along with the
periodic 1D polymer with the PBE-GGA functional. The re-
laxed unit cell of the 1D polymer included four pentagons
(see sup. mat.), and the energies for this system are referred
to that unit cell. The relaxed geometry of the FM dimers
solution was used for calculating all the magnetic phases.

The fact that we converge FM dimers as the lowest
energy phase of isomer 1 is not trivial, since dimerization
may happen as a result of magnetic frustration. Actually,
two examples where dimerization occurs in the ground
state are the frustrated S = 1/2 Heisenberg chains with
second-neighbours AF exchange and either AF or FM
first-neighbours interactions57–63:

H = J1

∑
〈i,j〉

~Si · ~Sj + JAF
2

∑
〈〈i,j〉〉

~Si · ~Sj , (1)

where ~Si is the spin operator vector and 〈i, j〉 (〈〈i, j〉〉)
runs over first (second) neighbouring spins with J1 (JAF

2 )
magnetic exchange.

Hence, Eq. (1) has two possibilities. First, when
J1 ≡ JAF

1 > 0, the model can be exactly solved at
the Majumdar-Ghosh point57–61 (JAF

1 = 2JAF
2 ), and the

ground state consists of a valence-bond solid (VBS) of
singlets that served as inspiration of the AKLT model64.
Second, considering PBC, in the J1 ≡ JFM

1 < 0 case62,63

we find two regimes: |JFM
1 /JAF

2 | > 4, where the ground
state is the FM solution, and |JFM

1 /JAF
2 | < 4, where

frustration promotes spontaneous symmetry breaking,
through a process of order by disorder65, that leads to
a VBS of FM dimers62,63. Interestingly, since these FM
dimers effectively behave as S = 1 spins, this phase has
been theorized to have a hidden topological order similar
to the AKLT model, showing a spin gap and edge-spin
fractionalization63.

Therefore, considering that when U increases the FM
eventually surpasses the AF first-neighbours interaction,
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FIG. 4: Spin-correlator analysis for isomer 1 molecules, com-
paring with the frustrated FM Heisenberg chain with OBC.
a), b) and c) are the spin correlators between the vertex atom
of first-neighbouring pentagons for molecules with different
sizes and U = 1.5|t|. d), e) and f) are the spin correla-
tors between first-neighbouring S = 1/2 spins of the frus-
trated FM chain with second-neighbours AF exchange and
JFM
1 = −2JAF

2 .

isomer 1 can be described by a frustrated FM S = 1/2
Heisenberg chain. This scenario, illustrated in Fig. 3d,
along with the results shown in Fig. 2, lead us to suggest
that the FM dimers shown so far are, indeed, such VBS,
and the edge magnetization originates in the fractional-
ization of an effective Haldane chain64.

In order to confirm this statement, we calculate spin
correlators with a CAS-Hubbard model between the dif-
ferent unpaired electrons in isomer 1, and compare them
with those between neighbouring spins in the frustrated
FM Heisenberg chain (Fig. 4). To do this, we first com-
pute the multiconfigurational eigenstates from an exact
Hubbard model of isomer 1 with U = 1.5|t|. Since the
VBS from polymers with P = 4m, where m is an inte-
ger, must be a singlet, we cannot use 〈Sz(i)〉 to assess the
magnetic moment. Instead, we compute the spin correla-

tor between each pentagon-vertex that are separated by
one hexagon (n, n+ 1):

χΨ
i,j = 〈Ψ|Sz(i)Sz(j)|Ψ〉, (2)

where Sz(i) is the z-component of spin operator at site i
and Ψ is a many-body wave function.

In Fig. 4a-c we show the correlators between the adja-
cent unpaired electrons in isomer 1 for different lengths.
Ψ is chosen to be the ground state, which changes spin
multiplicity depending on U (supp. mat.). Since we
are looking for the FM dimers phase, the selected U
was inside a range where the polymers with P = 4m
(P = 4m + 2) have an S = 0 (S = 1) ground state.
These different spin quantum numbers are imposed ac-
cording to whether the VBS presents even or odd number
of dimers. Interestingly, for large U the ground state has
S = P/2, as it happens for the frustrated Heisenberg
chain when |JFM

1 /JAF
2 | > 4.

In the left panels of Fig. 4 we can clearly see the forma-
tion of the FM dimers, either by an alternation of signs
in the spin correlators or by positive correlators with al-
ternating strength62, as in the inner pentagons of the
P = 8 molecule. These results are in qualitative agree-
ment with the correlators between neighbouring spins of
the frustrated FM Heisenberg chain (Fig. 4d-f), which
indicates that isomer 1 is correctly captured by this spin
model.

We want to stress in the possibility of doing a sim-
ilar analysis than that of Fig. 3 for the other isomers.
In this sense, we may anticipate their magnetic proper-
ties by means of their sublattice imbalance when t′ = 0,
that leads to the classification in Fig. 1. Isomers 2 and
3 have sublattice imbalance, then the wave functions of
neighbouring unpaired electrons overlap and belong to
the same class as isomer 1. On the other hand, isomers
4, 5 and 6, with |NA − NB | = 0, do not present this
feature, and unpaired electrons are connected by first-
neighbours hopping. The closure of the pentagon does
not add here any significant interaction, hence these iso-
mers can not be described by a frustrated chain, but by
a tight-binding chain instead (see supp. mat.). Thus,
the energy separation between the frontier molecular or-
bitals decreases with the length, that stabilizes the AF
spin-polarized solution, in agreement with the notion
that P = 2 molecules of class II are closed-shell38,66

that become magnetic when the size of the polymer is
increased36,40,41.

Class I isomers, on the other hand, as we have shown,
are more complicated. In the literature67, the smallest
island of isomer 1 is expected to be a triplet, which agrees
with our results, but isomer 2 with P = 2 is predicted
to be an open-shell singlet66,68. This can be explained
if we consider that the larger hybridization in isomer
2 (Fig. 5a) strengthens the AF first-neighbours interac-
tions enough to not be surpassed by the FM exchange.
If that is the situation, the system can be rationalized
with an S = 1/2 AF Heisenberg chain with AF second-
neighbours exchange, that justifies the S = 0 solution of
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FIG. 5: Study of the effects of radical hybridization on isomer
2. a), d) Non-interacting spectra for different t′, with t =
−2.7 eV. b), e) Energy differences between different magnetic
solutions as a function of U calculated with MF-Hubbard.
c), f) Energy differences between different magnetic solutions
as a function of t′, calculated with the MF-Hubbard model
and U = 1.8|t|. Left and right panels are for a molecule of
isomer 2 with P = 8 with one and two hexagons separating
the pentagons, respectively (insets of top panels).

the P = 2 island, and anticipates different physics for iso-
mer 2 despite it belonging to the same class than isomer
1.

This model, for larger chains and away of the
Majumdar-Ghosh point, exhibits two distinct phases.
When JAF

1 > 2JAF
2 , the numerical ground state con-

sists in singlet dimers with a weak AF correlation, that
is clearly seen in calculations of spin correlators calcu-

lated with the CAS-Hubbard model (supp. mat.). On
the other hand, when JAF

1 < 2JAF
2 , the singlet dimers

are ferromagnetically correlated69, which looks like the
broken dimers ↑↓↓↑↑↓↓↑ ground state from MF-Hubbard
of isomer 2 with P = 8 at 1.53|t| < U < 2.57|t|. How-

ever, the effective Ũ/|t̃| ratio35 for isomer 1 (2) is 16.5

(1.8) (where t̃ = 〈z1|Ht|z2〉, Ũ = U
∑

i |z1,2(i)|4, and z1,2

are two adjacent zero modes of molecules with t′ = 0 and
U = 1.5|t|). Since the open-shell picture gets obscured30

when Ũ ∼ |t̃|, then the description by a spin chain for
isomer 2 may be compromised, concluding that further
theoretical effort is needed to actually assess its ground
state.

Finally, we explore a little further the idea that the
FM dimers are unstable due to electron hybridization.
As we can see in Fig. 5c, by decreasing t′ it is possible to
obtain the FM dimers as the ground state, but this mod-
ulation of t′ seems unrealistic for a real carbon bond.
Instead, by adding an additional hexagon between each
pair of pentagons, the lower single-particle gap opens for
t′ = t (Fig. 5d) and the FM dimers are now the ground
state for a broader window of U and in the t′ ≈ t vicin-
ity (Fig. 5e,f). These results show that, by decreasing
the hybridization, the description by the frustrated FM
chain becomes more feasible. Then, the FM dimers get
stabilized, but also the FM phase, which is the ground
state for U > 2.0|t|.

Conclusions. We have presented the FM dimers as
the ground state of isomer 1, with characteristic mag-
netic localization at the termini that suggests fraction-
alization. To understand this behaviour, we performed
an analysis of the magnetic interactions that classifies
the isomers into either class I with competing FM and
AF first-neighbours exchange and second-neighbours AF
exchange, or class II with first-neighbours AF exchange
only. The sign and range of these magnetic interactions
are enough to explain the results obtained for isomer 1,
since the FM dimers can be identified as the ground state
of the S = 1/2 FM Heisenberg chain with AF second-
neighbours exchange.
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15 N. Pavliček, A. Mistry, Z. Majzik, N. Moll, G. Meyer, D. J.
Fox, and L. Gross, “Synthesis and characterization of tri-
angulene,” Nature Nanotechnology 12, 308 (2017).

16 S. Mishra, T. G. Lohr, C. A. Pignedoli, J. Liu, R. Berger,
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