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ABSTRACT: The reaction of 2-(trimethylsilyl)thiophen-3-yl triflate with
CsF in the presence of 2,3,4,5-tetraphenylcyclopentadienone affords 4,5,6,7-
tetraphenylbenzo[b]thiophene, as it would be expected from the
hypothesized generation and trapping of 2-thiophyne. However, a detailed
experimental and computational study discards the intermediacy of this
elusive 5-membered hetaryne. Instead, a complex mechanism involving the
generation of an intermediate ketocarbene, which adds to the cyclo-
pentadienone to give an isolable tricyclic intermediate, followed by thermal
rearrangements, is proposed.

Around 120 years ago, Störmer and Kahlert postulated, for
the first time, the generation of a didehydroaromatic

intermediate, 2,3-didehydrobenzofuran,1 although the general
acceptance of arynes was not firmly established until the
1950s.2 Since then, a large number of arynes have been
proposed, including carbocyclic3 and heterocyclic4 species.
While the existence of six-membered arynes has been firmly
established and even proved by STM/AFM imaging,5 the
formation of most 5-membered heterocyclic arynes,6−8 and
particularly, 2,3-didehydrothiophene (2-thiophyne, 1, see
Figure 1),9 has been a matter of debate. In fact, although

metal complexes of η2-2-thiophyne are well-known,10 the
existence and reactivity of the free hetaryne species has not
been unambiguously proven.
Pionering work on the attempted generation and trapping of

2-thiophyne (1) was performed by Wittig and Rings, who
heated the organomercuric derivative 2 in the presence of
cyclopentadienone 3, isolating benzothiophene 4 (see Figure
2).11a Although this product was the one expected from the
cycloaddition of the hetaryne 1 to diene 3, followed by
cheletropic extrusion of CO from adduct 5a, additional
experimental evidence led the authors to suggest an alternative
mechanism involving the cycloaddition of cyclopentadienone 3
to the C2−C3 double bond of 3-iodothiophene leading to
intermediate 6a.11b Some years later, Reinecke and co-workers
studied the flash vacuum pyrolysis (FVP) of anhydride 7 in the
presence of dienes such as thiophene, obtaining benzothio-

phene 8.12 Their detailed study concluded that the best
explanation for the results is the one based on the involvement
of 2-thiophyne (1) and adduct 5b, although the direct reaction
of the diene with anhydride 7 (to give 6b) or with some
decomposition product of 7, must also be considered. Further
attempts to unambiguously demonstrate the generation of 2-
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Figure 1. 2,3-Didehydrothiophene or 2-thiophyne (1).

Figure 2. Previous attempts to generate and trap 2-thiophyne (1).
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thiophyne (1) from anhydride 7 were also inconclusive.13

More recently, the generation of a 2-thiophyne by treatment of
a 2-thiophenyltriflate with base was claimed,14 but the detailed
study of this transformation has been not reported.
Although the aforementioned unsuccessful results were

attributed to the high strain and the lack of stability of 2-
thiophyne (1), recent computational work identified this
hetaryne intermediate as synthetically accessible.15 This
prospect, and our long-term experience in aryne chemistry,
led us to explore the possibility to generate 1 from a
Kobayashi-type precursor,16 the previously undescribed 2-
(trimethylsilyl)thiophen-3-yl triflate (9).
For the synthesis of triflate 9, depicted in Scheme 1,

(thiophen-3-yl)boronic acid (10) was treated with hydrogen

peroxide to afford thiophen-3-ol (11),17 which was reacted in
situ with DABCO and isopropyl isocyanate to give carbamate
12 in 40% yield. Then, the o-lithiation/silylation protocol
described by Hoppe and coworkers18 for N-silylated O-aryl N-
isopropylcarbamates was used to obtain compound 13 in 66%
yield. A subsequent one-pot deprotection/triflation procedure,
previously utilized by Houk and Garg for the synthesis of other
hetaryne precursors,4b,19 afforded silyl triflate 9 in 47% yield.
The ability of triflate 9 as precursor of 2-thiophyne (1) was

tested by trapping experiments with different dienes. While
treatment of 9 with CsF in the presence of furan, 1,3-
diphenylisobenzofuran, or anthracene did not afford the
expected adducts, the reaction with 2,3,4,5-tetraphenylcyclo-
pentadienone (3) at room temperature in THF/ACN,
followed by heating under reflux for 16 h, successfully allowed
us to detect and isolate 4,5,6,7-tetraphenylbenzo[b]thiophene
(4), albeit in low yield (<5%). Although this result was
consistent with the expected generation of 2-thiophyne (1)
and its trapping as the Diels−Alder adduct 5a, which should
lead to 4 by cheletropic extrusion of CO upon heating,
alternative nonaryne pathways such as the one involving
intermediate 14 (Scheme 2) could not be ruled out,
particularly considering the precedents discussed above (see
Figure 2).
To shed light on the reaction mechanism, a careful

experimental study was performed, focusing on the identi-
fication of intermediate species such as the hypothesized
adducts 5a or 14. Thus, we monitored the reaction of triflate 9
with CsF in the presence of 3, performed this time at room

temperature, and stopped the reaction once the starting triflate
9 was consumed. After workup and chromatographic
purification, we isolated a major product that proved to be
NMR- and IR-data-compatible with 5a, but showed a mass
spectrum whose molecular ion peak was 16 mass units larger
than expected. Fortunately, we were able to grow single crystals
of this new compound, thus allowing us to perform X-ray
diffraction (XRD) analysis that unambiguously revealed the
totally unexpected structure 15 (Scheme 3 and Figure 3; see
the Supporting Information for details).

Remarkably, when a solution of 15 in o-dichlorobenzene was
heated at 180 °C for a week, benzo[b]thiophene 4 was isolated
in quantitative yield, proving that 15 is a real intermediate in
the formation of 4. Furthermore, stopping this reaction before
complete conversion allowed us to isolate a new intermediate
which was tentatively identified as 16. This new compound
was also quantitatively converted into 4 by refluxing in o-
dichlorobenzene (Scheme 3).
These results and, particularly, the isolation and unambig-

uous characterization of the tricyclic intermediate 15, suggest
that benzothiophene 4 was formed through a complex

Scheme 1. Synthesis of 2-(Trimethylsilyl)thiophen-3-yl
Triflate (9)

Scheme 2. Hypothesized Pathways for the Reaction of
Triflate 9 with CsF and Cyclopentadienone 3

Scheme 3. Experimentally Detected Intermediate Species in
the Formation of Benzo[b]thiophene 4 from Triflate 9, CsF,
and 3
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mechanism not involving hetaryne 1. We decided to study this
reaction computationally and, thus, we first performed B3LYP/
6-31++G(d,p) calculations20 on the decomposition of triflate 9
(see the Supporting Information for details). Assuming that
the anionic intermediate 17 is formed from 9,21 several
pathways can be envisaged, as depicted in Scheme 4.

Calculations show that elimination of the triflate to afford
the aryne (2-thiophyne, 1) is a barrierless process, endergonic
by 11.7 kcal/mol.22 An alternative anionic thia-Fries rearrange-
ment, which has been observed in some attempts of aryne
generation from aryl triflates,23 is also unlikely to happen,
because of the relatively high activation barrier for the
formation of 19 (16.8 kcal mol−1). Surprisingly, we found
that the most kinetically favorable process, with an activation
barrier of 8.5 kcal mol−1, is the formation of the ketocarbene
18 (see the Supporting Information) by cleavage of an O−S
bond of the triflate groups.
Interestingly, the unexpectedly found ketocarbene 18 could

reasonably explain the formation of the previously isolated
tricyclic intermediate 15 and, thus, we computed the reaction
of 18 with cyclopentadienone 3, as shown in Scheme 5. One
possible mechanistic pathway could involve the [2 + 1]
cycloaddition of the carbene to one of the double bonds of 3,
leading to the spirocompounds 20 and/or 21. In fact, we could
find transition states for the formation of both isomers, given
that the barriers (18.6 and 18.7 kcal mol−1) and the reaction
energies (−39.1 and −40.8 kcal mol−1, respectively) were quite

similar, and also found a transition state for the oxavinylcy-
clopropane rearrangement24 of isomer 20 to give the isolated
compound 15 (barrier = 23 kcal mol−1). However, the study
showed that the alternative pathway that leads directly to 15
through a concerted formal 1,3-dipolar addition is more
favorable. This reaction would proceed through a very
asynchronous transition state, with a barrier of 16 kcal mol−1

(2.6 kcal mol−1 lower than the barrier for the cyclopropanation
reaction). Note that the alternative regioisomeric adduct 22
resulted to be lightly less stable than 15, and the barrier for its
formation is substantially higher (32.4 kcal/mol).
Once the viability of the generation of ketocarbene 18 and

its reasonable reaction with cyclopentadienone 3 to afford the
fully characterized compound 15 were demonstrated, we
focused our attention on the transformation of this
intermediate product to the final benzothiophene 4.
As previously mentioned, 15 is thermally converted to 4,

with the loss of CO2, by prolonged heating in refluxing o-
dichlorobenzene. To gain insight into this transformation, we
performed a density functional theory (DFT) study (see the
Supporting Information) that led us to propose the mechanism
outlined in Scheme 6. Thus, compound 15 can suffer a
rearrangement to give spirane 20, which might be a key
intermediate in this transformation, since DFT calculations
show that it easily undergoes ring-opening to give ketene 23. A
subsequent 8π electrocyclization would generate compound
16, which evolves with the loss of CO2 to afford benzo[b]-
thiophene 4.25

To summarize, 2-(trimethylsilyl)thiophen-3-yl triflate has
been synthesized as a potential Kobayashi-type precursor of
the elusive five-membered hetaryne 2-thiophyne (1). Although
the reaction of this triflate with 1,2,3,4-tetraphenylcyclopenta-
dienone under aryne forming conditions afforded the expected
trapping product, computational and experimental studies,
including the isolation and characterization of unexpected
intermediate products, ruled out the formation of the hetaryne.
Instead, our results revealed an unprecedented mechanism

Figure 3. Structure and ORTEP drawing of intermediate 15.

Scheme 4. Computed Energy Profiles (ΔG, kcal mol−1) for
the Evolution Pathways of Intermediate 17

Scheme 5. Energy Profile (ΔG, kcal mol−1) for the Reaction
Ketocarbene 18 with Cyclopentadienone 3
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involving the generation and subsequent reaction of a
ketocarbene intermediate.
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