The first atomic-resolution images of extraterrestrial molecules
- 23rd December 2021
Meteorites are fragments of asteroids (and, potentially, comets) that reach the Earth’s surface intact. They’re leftovers from the solar system’s formation, providing clues to its history in the molecules they contain. Thanks to our latest research, published today in Meteoritics and Planetary Science, we can now read those clues a little better.
Most primitive meteorites have remained practically unchanged since their formation billions of years ago. They’re like time machines that give us access to the remote past when the planets orbiting the sun first came to be. Part of the cargo that meteorites carry with them is organic matter, which could have been delivered to the early Earth, and might have played a role in the origins of life.
In our study,1 we used ultra-high resolution atomic force microscopy (AFM) to investigate meteoritic organic matter for the first time. We looked at samples of the famous Murchison meteorite, which fell in its namesake small Australian town in September, 1969. We took advantage of a unique strength of AFM — its single-molecule sensitivity — to visualize and identify individual molecules. Our findings, obtained by a multinational team of researchers, including our team at IBM Research in Zurich, provide a proof of concept that shows AFM can resolve and identify single molecules of meteoritic origin.
Please find the full original press release here:
For further information on the publication please read here:
www.astropah-news.strw.leidenuniv.nl